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Introduction
My dissertation is in theoretical asset pricing and the general question I am trying to address

is: How do trading and informational frictions affect asset returns and the allocative efficiency

of markets?

I have been working mainly on the “search frictions” that prevail on over-the-counter (OTC)

markets. Search frictions refer to the necessity to search for counter-parties when trading on

a bilateral market. This search process is time-consuming and of uncertain duration. As a

result, and as shown in the seminal contribution Duffie, Gârleanu, and Pedersen [2005], search

frictions lead to an inefficient asset allocation and affect prices. OTC markets are huge and

include essentially all fixed income securities, a vast majority of derivatives, real estate, and

foreign exchange markets.

In the three chapters that my dissertation comprises, I analyze three specific issues related

to search frictions. In the first chapter, I evaluate the cross-market effects of search frictions.

More specifically, I study a general equilibrium model in which investors face endowment risk

and trade two correlated assets; one asset is traded on a liquid market whereas the other is

traded on an illiquid over-the-counter (OTC) market. Endowment shocks not only make prices

drop, they also make the OTC asset more difficult to sell, creating an endogenous liquidity

risk. This liquidity risk increases the risk premium of both the OTC asset and liquid asset.

Furthermore, the OTC market frictions increase the trading volume and the cross-sectional

dispersion of ownership in the liquid market. Finally, if the economy starts with only the OTC

market, then I explain how opening a correlated liquid market can increase or decrease the

OTC price depending on the illiquidity level. The model’s predictions can help explain several

empirical findings.

In the second chapter of my thesis, I study how investors balance two types of illiquidity when

choosing an optimal portfolio. The two types of illiquidity are search frictions, the risk of being

sometimes unable to trade, and transaction costs, the costly opportunity to trade at any time.

More specifically, I study an equilibrium model in which investors hedge endowment risk

on two markets. The first market is centralized and trades can be executed at any time but

against proportional transaction costs. The second market is OTC and trading requires to

search for a counter-party. I show the existence of an equilibrium for any level of transaction

costs and characterize in closed-form how the two frictions jointly modify the risk-premia

v



Introduction

on both markets. The transaction costs reduce both the transaction sizes and frequencies

on the centralized market, and affect the price on the OTC market by making hedging more

costly. The prices bargained OTC depend non-monotonically on the transaction costs on the

exchange. I link my results to recent regulatory proposals and show how taxing CDS trading

may both increase of decrease the cost of debt financing.

In the third and last chapter, which is joint work with Julien Cujean,1 we evaluate the joint

effect of search frictions and asymmetric information on the allocative efficiency of a market

and the cost of providing liquidity. More specifically, we study how transparency, modeled as

information about one’s counterparty liquidity needs, affects the functioning of an OTC market.

In our model, investors hedge endowment risk by trading bilaterally in a search-and-matching

environment. We construct a bargaining procedure that accommodates information asymme-

try regarding investors’ inventories. Both the trade size and the trade price are endogenously

determined. Increased transparency improves the allocative efficiency of the market. However,

it simultaneously increases inventory costs, and leads to a higher cross-sectional dispersion

of transaction prices. For investors with large risk exposure, the increase of the inventory

costs dominates the benefits of the market efficiency. We link the model’s predictions to

recent empirical findings regarding the effect of the TRACE reporting system on bond market

liquidity.

Key words: Asset Pricing Theory; Over-the-Counter Markets; Search Frictions; General Equi-

librium; Information Asymmetry

1Robert H. Smith School of Business, University of Maryland, 4466 Van Munching Hall, College Park, MD
20742, USA; +1 (301) 405 7707; www.juliencujean.com; jcujean@rhsmith.umd.edu .
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Introduction (Français)
Ma thèse est en théorie de la valuation des actifs et j’étudie comment les frictions dans

l’exécution des transactions et les frictions d’asymétrie information modifient les rendements

des actifs et l’efficience allocative des marchés.

Je me suis concentré sur les “frictions de recherche” (search frictions en anglais) que l’on

rencontre sur les marchés de gré à gré (over-the-counter markets ou OTC markets en anglais).

Les frictions de recherche sont le temps nécessaire à trouver une contrepartie lorsque l’on

souhaite exécuter une transaction sur un marché bilatéral. Cette recherche est coûteuse

en temps et de durée incertaine. Comme montré dans une influente publication de Duffie

et al. [2005], il suit que les frictions de recherche induisent une allocation des actifs qui est

inefficiente et modifie les prix de transaction. Les marchés de gré à gré sont énormes et

comprennent essentiellement tous les marchés obligataires, une large majorité des marchés

de dérivés, l’immobilier, et les marchés de devises.

Dans les trois chapitres des ma thèse, je considère trois questions liées aux frictions de

recherche. Dans le premier chapitre, j’analyse l’effet transversal des frictions de recherche à

travers différents marchés. Pour être plus spécifique, j’étudie un modèle d’équilibre général

dans lequel des investisseurs mitigent leur risque de dotation à l’aide de deux actifs dont

les fondamentaux sont corrélés. Un des actifs s’échange sur un marché liquide alors que le

second s’échange sur un marché de gré à gré illiquide. Les chocs de dotation ne font pas

seulement chuter le prix des actifs, ils rendent aussi la liquidation de l’actif échangé de gré

à gré plus difficile, ce qui induit de manière endogène un risque de liquidité. Le risque de

liquidité augmente la prime de risque de l’actif illiquide, mais aussi celle de l’actif liquide. De

plus, les frictions de recherche augmentent le volume d’échange et la dispersion transversale

des positions choisies sur le marché liquide. Finalement, si l’économie débute uniquement

avec un marché de gré à gré, je montre comment l’ouverture du marché liquide peut, selon

le niveau des frictions, augmenter ou réduire le prix de l’actif illiquide. Les prédictions du

modèle peuvent nous aider à expliquer plusieurs résultats empiriques documentés dans la

littérature.

Dans le deuxième chapitre de ma thèse, j’étudie comment des investisseurs choisissent leur

portefeuille lorsqu’ils font face à deux types d’illiquidité. Ces deux types d’illiquidités sont les

frictions de recherche, soit le risque de ne pas toujours être capable d’échanger un actif, et
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des coûts de transaction, soit la possibilité d’échanger un actif à tout moment mais contre

le paiement d’une commission. Pour être plus spécifique, j’étudie un modèle dans lequel

des investisseurs mitigent leur risque de dotation sur deux marchés. Le premier marché est

une bourse sur laquelle des transactions peuvent être exécutées à tout moment mais contre

le paiement d’une commission proportionnelle au montant échangé. Le second marché est

un marché de gré à gré sujet à des frictions de recherche. Je montre l’existence et l’unicité

d’un équilibre pour n’importe quel niveau de coûts de transactions et caractérise en forme

analytique comment les deux frictions se combinent pour modifier la prime de risque sur

les deux marchés. Les coûts de transaction réduisent tant la taille que la fréquence des

transactions et modifient les prix négociés de gré à gré en rendant la mitigation des risques

sur l’autre marché plus coûteuse. Les prix négociés sur le marché de gré à gré dépendent de

manière non monotone des coûts de transactions pratiqués sur la bourse. Je tire des parallèles

entre les prédictions de mon modèle et des propositions récentes concernant la régulation des

marchés financiers. Je montre, par exemple, comment une taxation des transactions sur les

dérivés de crédits (credit default swaps) pourrait augmenter ou réduire le coût du financement

obligataire.

Le troisième et dernier chapitre de ma thèse est un travail commun avec Julien Cujean.2

Dans ce chapitre, nous évaluons l’effet conjoint des frictions de recherche et de l’asymétrie

d’information sur l’efficience de l’allocation des actifs sur un marché de gré à gré et sur les

coût induits par une activité d’intermédiation. Pour être plus précis, nous étudions comment

la transparence, modélisée comme une information concernant les besoin de liquidité de

sa contrepartie, détermine le fonctionnement d’un marché de gré à gré. Dans notre modèle,

des investisseurs mitigent leur risque de dotation en échangeant un actif sur un marché

bilatéral affecté par des frictions de recherche. Nous proposons une procédure de négociation

(bargaining) qui prend en compte l’asymétrie d’information concernant les expositions des

investisseurs. Tant la quantité échangée que le prix négocié sont déterminés de manière

endogène. Un transparence accrue améliore l’efficience de l’allocation de l’actif. Toutefois,

cette transparence accrue augmente également les coûts d’inventaires et induit une plus

grande dispersion transversale des prix de transactions. Pour les investisseurs avec une large

exposition à l’actif, l’accroissement des coûts d’inventaires domine les bénéfices induits par les

gains d’efficience. Nous tirons des parallèles entre les prédictions du modèle et des résultats

empiriques récents concernant le système TRACE et son effet sur la liquidité des marchés

obligataires américains.

Mots-clés: théorie de la valuation d’actif, marchés de gré à gré, frictions de recherche, équilibre

général, asymétrie d’information

2Robert H. Smith School of Business, University of Maryland, 4466 Van Munching Hall, College Park, MD
20742, USA; +1 (301) 405 7707; www.juliencujean.com; jcujean@rhsmith.umd.edu .
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1 Equilibrium Asset Pricing with both
Liquid and Illiquid Markets

I1 study a general equilibrium model in which investors face endowment risk and trade two

correlated assets; one asset is traded on a liquid market whereas the other is traded on an

illiquid over-the-counter (OTC) market. Endowment shocks not only make prices drop, they

also make the OTC asset more difficult to sell, creating an endogenous liquidity risk. This

liquidity risk increases the risk premium of both the OTC asset and liquid asset. Furthermore,

the OTC market frictions increase the trading volume and the cross-sectional dispersion of

ownership in the liquid market. Finally, if the economy starts with only the OTC market, then

I explain how opening a correlated liquid market can increase or decrease the OTC price

depending on the illiquidity level. The model’s predictions can help explain several empirical

findings.

1.1 Introduction

Today, many assets are traded increasingly, or even exclusively, in over-the-counter (OTC)

markets. For example, essentially all fixed income securities and a vast majority of all exist-

ing derivatives are traded OTC. Even for liquid stocks, large block trading among financial

1I thank my advisor Semyon Malamud for his continued guidance. I also thank Jules van Binsbergen, Pierre
Collin-Dufresne, Julien Cujean (Gerzensee discussant), Jerome Detemple, Jens Dick-Nielsen, Larry Epstein, Rüdiger
Fahlenbrach, Nicolae Gârleanu, Michel Habib Julien Hugonnier, Benjamin Junge, Peter Kyle, Emmanuel Leclercq,
Albert Menkveld (Rotterdam discussant), Igor Makarov, Gustavo Manso, Christine Parlour, Lasse Pedersen, Ailsa
Röel, Marzena Rostek, Norman Schürhoff, Bruno Strulovici, René Stulz, Alexei Tchistyi, Johan Walden, and Ramona
Westermann for their comments and suggestions. In addition, I thank the participants in the Doctoral Workshop in
Finance in Gerzensee, the 4th European Summer School in Financial Mathematics, the North American Summer
Meetings 2012 of the Econometric Society, the European Meetings 2012 of the Econometric Society, the Gerzensee
Search and Matching in Financial Markets Workshop, the Pre-seminar in Finance at Haas-Berkeley, and the Sixth
Erasmus Liquidity Conference, Copenhagen Business School, Paris Dauphine, EPFL (Brown Bag), University of
Geneva, HEC Paris, Université Laval, Norwegian School of Economics, University of Rochester (Simon), Rotterdam
School of Management, and Stanford GSB . I am especially grateful to Darrell Duffie for his suggestions.
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Chapter 1. Equilibrium Asset Pricing with both Liquid and Illiquid Markets

institutions is typically done off-exchange. Trading in OTC markets requires searching for a

suitable counter-party and bargaining over the exact terms of the transaction. In an important

contribution, Duffie et al. [2005] model the functioning of an OTC market and show how search

frictions affect prices and make the equilibrium allocation of the asset inefficient. A logical

question follows as to whether investors hedge the inefficiently allocated asset by trading more

liquid instruments with correlated cash-flows. In this paper, I address this question and show

how illiquidity due to search frictions spills over to liquid markets, affecting holdings, trading

volumes, and risk premia.

Prime examples of securities offering exposure to the same fundamentals but with different

levels of liquidity are bonds and credit default swaps (CDSs). Both bonds and CDSs are

traded OTC, but CDSs are typically more liquid.2 Further examples include mortgages and

collateralized debt obligations (CDOs), CDSs and index CDSs, options and index options,

forwards and futures contracts, and real estate assets and property total return swaps. In all of

these pairs, the first asset is less liquid and traded OTC.

The possibility of trading liquid securities may have a non-trivial effect on the transactions

bargained on the OTC market. At the individual level, it improves each investor’s outside

option by increasing the set of investment opportunities. However, it also improves the outside

options of an investor’s trading counter-parties, leading to equilibrium feed-back effects on the

bargaining outcome. At the same time, the search friction on the OTC market creates demand

for the liquid asset that is not driven by its fundamentals, leading to illiquidity spillovers. The

effect of these spillovers on the equilibrium prices of both the liquid and illiquid assets is a

priori unclear and can only be quantified in a general equilibrium model. In this paper, I

propose and analyze such a model.

I consider an economy in which risk-averse investors share endowment risks by trading two

imperfectly correlated assets. The first is traded in a frictionless way on an exchange, whereas

the second is traded on an illiquid OTC market.3 I adopt the framework developed by Duffie

2A number of features make CDSs more liquid than bonds. First, a CDS contract on a bond issuer offer a
homogeneous alternative to a possibly very fragmented bond market. Second, CDSs are derivatives and, as a
result, new contracts can be created when needed and there is no need to locate an existing contract. Longstaff,
Mithal, and Neis [2005] further discuss the relative liquidity of CDS and bond markets. They argue that the frictions
on the CDS market are negligible when compared to those on the bond market. Another important difference is
that trading a CDSs is far less capital intensive than trading bonds. This difference in the margin requirements
increases CDS trading volumes at the expenses of bond trading, which makes CDS trading even cheaper when
compared to bond trading. The difference in margin requirements is the object of, for instance, Basak and Croitoru
[2000] and Gârleanu and Pedersen [2011], and is not explicitly modeled in this paper.

3In my model, there is a dichotomy between the (perfectly) liquid and illiquid markets. This is for ease of
exposition and my conclusions are also relevant for pairs of markets that are “unequally illiquid”. Again considering
the CDS-bond pair, it is true that CDS markets are not perfectly liquid. For example, Bongaerts, de Jong, and
Driessen [2011] and Junge and Trolle [2013] find that illiquidity is priced on CDS markets. Still, CDS markets are
usually liquid when compared to the underlying bond market, and investors typically hedge a bond portfolio with

2



1.1. Introduction

et al. [2005] to model the OTC market. In this framework, investors are matched randomly over

time and the Nash bargaining solution characterizes the bilateral trades. Illiquidity, measured

by the expected search time between two meetings, affects investors both because contacting

trading partners is time consuming and because prices are not competitive.

Investors on the OTC market use the liquid asset as an imperfect substitute for the illiquid

asset. Specifically, investors hedge their temporary sub-optimal exposure with the liquid

instrument.4 Due to this effect, the trading volume on the liquid market is always higher in

the presence of the OTC market. Interestingly, the strictly positive increase in the trading

volume sometimes persists even in the limit of vanishing search frictions. I also show that the

dispersion of holdings in the liquid asset increases in the illiquidity of the OTC market. This

prediction is consistent with the recent empirical findings of Oehmke and Zawadowski [2013]

regarding bond and CDS markets. Oehmke and Zawadowski [2013] document an average net

exposure on the CDS market that increases in the illiquidity of the bond market.

I now discuss how the frictions on the OTC market affect the expected returns of the liquid

asset. I explicitly characterize the equilibrium response of the liquid asset to the frictions

on the OTC market, and show that the spillover effect is driven by illiquidity risk and not

by the illiquidity level alone. The mechanism is as follows: An aggregate shock to investors’

hedging demand changes the imbalance between buyers and sellers on the OTC market. This

imbalance determines the rate at which the illiquid asset is reallocated. The endogenous

relationship between the preference shocks and the search friction makes the allocative

efficiency of the OTC market time-varying. In equilibrium, agents require a premium for

taking exposure to this non-fundamental risk and the correlation between the efficiency of

the OTC market and the returns on the liquid asset is priced. When the risk profiles of the two

assets are sufficiently similar, the allocative efficiency is positively correlated to the returns of

the liquid asset. This means that the liquid asset performs poorly exactly when liquidating

one’s illiquid portfolio becomes more difficult, and this command a positive risk premium on

the liquid asset. This model prediction is consistent with the conclusions of several empirical

studies. For example, both Tang and Yan [2006] and Lesplingart, Majois, and Petitjean (2012)

show that CDS spreads increase with the illiquidity of the underlying bonds. Das and Hanouna

[2009] show how these same CDS spreads increase with the illiquidity of the debt issuer’s

stock.5 The pricing of illiquidity risk also has interesting connections with the literature on

CDS contracts and not the other way around.
4This type of behavior is not restricted to OTC markets. For example, stock index futures may be traded instead

of re-balancing a diversified stock portfolio. Even if each stock is traded on an exchange and relatively liquid,
trading one liquid futures is faster, less costly, and more convenient than re-balancing a diversified stock portfolio.
Also, exchange-traded funds (ETFs) give investors the opportunity to conveniently adjust their exposures to stocks,
bonds, commodities, or currencies. See Greenwich [May 2012] for a survey documenting the use of ETFs as an
alternative to trading the underlying market.

5When comparing these empirical studies to the model’s predictions, the returns on the liquid asset should be
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Chapter 1. Equilibrium Asset Pricing with both Liquid and Illiquid Markets

long-run risk, pioneered by Bansal and Yaron [2004]. Namely, as it may take a long time for the

market to recover after a liquidity shock, illiquidity leads to endogenous long run risk in the

economy. This long run risk is priced, and its price depends on the long run value of future

liquidity for an investor, expressed by the corresponding certainty equivalent.

Conversely, the liquid market has two effects on the OTC market. On the one hand, it mitigates

the search frictions and reduces the illiquidity discount, pushing the price on the OTC market

up. On the other hand, the liquid market diverts some of the illiquid asset’s value as a risk-

sharing instrument, pushing the OTC price down. The strength of these two effects depends on

the risk profiles of the assets and the severity of the search friction. Evaluating the overall effect

of the liquid market thus raises the following question: What is a meaningful combination of

risk profiles and illiquidity level?

Looking at bonds and CDSs, or at mortgages and CDOs, or at any of the pairs listed above,

we always observe the same pattern: The illiquid OTC market existed first and then the

liquid market was created by financial intermediaries. The financial innovation is typically

initiated either by an exchange or, if the new security trades OTC as well, by the dealers that

will intermediate trades on the newly created market. In both cases, the intermediaries are

interested in creating an active market.

Motivated by these examples, I put more structure into my model by endogenizing the risk-

profile of the liquid asset. I assume that intermediaries select the liquid asset that maximizes

the trading volume. Next, I compare the prices on the OTC market with and without the liquid

asset. The risk profile of the optimal liquid asset is a weighted average of two risk profiles.

The first profile is that of the illiquid asset, the second is the profile that would be optimal in

terms of risk-sharing. I show that the weight on the profile of the illiquid asset is monotone

increasing in the liquidity of the OTC market because, with a more active OTC market, there

is more trading volume to capture. Perhaps paradoxically, this also means that the search

frictions are easier to mitigate when they are smaller in the first place. Overall, the endogenous

liquid asset increases the price on the OTC market when the search friction is sufficiently

strong, but decreases it otherwise. Thus, the mitigation of the illiquidity discount dominates

when the frictions on the OTC markets are strong enough, but the diversion of risk-sharing

value away from the OTC market dominates otherwise.

This ambiguous equilibrium behavior is consistent with empirical findings regarding CDS

trading and bond spreads. For example, Ashcraft and Santos [2009] find that the onset of

CDS trading does not decrease the bond yield of the average firm, despite the new hedging

opportunities. In my model, this corresponds to the illiquid market (the bond market) being at

understood as the returns on a CDS contracts for a protection seller. Indeed, holding a bond or selling protection
on a CDS market offer essentially the same exposure to credit risk.

4



1.1. Introduction

the threshold where the mitigation and diversion effects compensate each other. Differently,

Saretto and Tookes [2013] find that CDS trading may have made debt financing less costly, but

did so by relaxing only the “non-price” terms of debt.6 In my model, this corresponds to the

parameter range for which the mitigation effect dominates, meaning the range over which the

trading frictions on the illiquid (bond) market are rather severe.

Finally, Das, Kalimipalli, and Nayak (2013) study empirically the interactions between CDS

and bond markets and focus on informational efficiency. They provide “[. . . ]evidence of a

likely demographic shift by large institutional traders from trading bonds to trading CDS in

order to implement their credit views, resulting in declining efficiency and quality in bond

markets.” The same mechanism drives the findings in Das, Kalimipalli, and Nayak [2013] and

the equilibrium behavior of my model. Specifically, Das et al. [2013] show how a CDS market

diverts some trading away from the bond market, how this reduces the value of the bond, and

how this reduction dominates any other benefits brought by the new market. This mechanism

coincides with the equilibrium behavior of my model when the search frictions on the OTC

market are not too severe.

Literature Review My paper builds on the literature considering the general equilibrium

impact of trading frictions. These frictions can be the transaction costs on centralized markets,

as in Lo, Mamaysky, and Wang [2004], Acharya and Pedersen [2005], Garleanu and Pedersen

[2013], and Buss and Dumas [2013], or the search and bargaining frictions on OTC markets.7

The analysis of the search and bargaining frictions on OTC markets started, to a large extent,

with Duffie et al. [2005]. Duffie et al. [2005] a model of OTC trading that shares features with

job market models such as Diamond [1982].8 The model that is most closely related to mine is

Duffie, Gârleanu, and Pedersen [2007]. They also study bilateral trading in OTC markets with

risk-averse agents. In comparison with Duffie et al. [2007], my main contribution is to model a

second, liquid market and to study the interactions between the liquid and OTC markets. On

the methodological side, I provide an existence and uniqueness argument that is also valid

in Duffie et al. [2007]. In addition, I allow for more general aggregate shocks in the dynamic

analysis of the model. Further references in asset pricing with search and bilateral trading

include Weill [2008], Vayanos and Weill [2008], and Afonso and Lagos [2011]. A closely related

strand of research considers centralized markets to which investors have intermittent and

sometimes costly access. References in this strand include Lagos and Rocheteau [2007], Weill

[2007], Lagos and Rocheteau [2009], and Gârleanu [2009]. In all these references, investors

6The non-price terms of a bond are its maturity, notional, and its many contract details (amortization, default
triggers, embedded options, etc).

7Further trading restriction include portfolio constraints, margin requirements, and limited market participa-
tion. References in this literature include Merton [1987], Basak and Cuoco [1998], and Hugonnier [2012].

8See Mortensen [1987] or Rogerson, Shimer, and Wright [2005] for surveys of search models in labor economics.
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trade on a unique market. My setting is also related to the one in Ang, Papanikolaou, and

Westerfield [forthcoming], even if Ang et al. [forthcoming] focus on a porfolio problem in

partial equilibrium. An extreme case of my model, the case in which trade on the OTC market

is impossible, is related to the analysis in Longstaff [2009].

My paper also relates to the literature considering the interactions of different market struc-

tures. See, for example, Pagano [1989], Rust and Hall [2003], Miao [2006], and Vayanos and

Wang [2007]. In these models, agents must execute a single trade and balance the benefits of a

better price against a costly search. In contrast, in my model, investors trade repeatedly on

both markets. Vayanos [1998] and Huang [2003] also analyze models in which agents trade

assets with different liquidity levels. In both cases, however, the illiquidity is modeled by

exogenous transaction costs. Exogenous and constant transaction costs cannot capture the

endogenous and time varying interaction between demand shocks and illiquidity. Parlour and

Winton [2013] discuss the role of monitoring when a bank chooses between selling loans and

buying CDS protection. Biais [1993], Yin [2005], and De Frutos and Manzano [2002] statically

compare prices on centralized and fragmented markets.

My paper is also related to the literature on hedging demand as a determinant of illiquidity

discounts. In the context of bond markets, this mechanism is discussed, for instance, by Duffie

[1996], Duffie and Singleton [1997], Krishnamurthy [2002], and Graveline and McBrady [2011].

My discussion of illiquidity spillovers is related to the literature that investigates contagion

effects across markets. References focusing on volatility contagion include Hamao, Masulis,

and Ng [1990], Lin, Engle, and Ito [1994], Kyle and Xiong [2001], Kodres and Pritsker [2002], and

Hasler [2013]. References such as Chordia, Sarkar, and Subrahmanyam [2005] and Mancini,

Ranaldo, and Wrampelmeyer [2013] document the cross-market effects of both returns and

liquidity. My model explicitly describes a channel for illiquidity spillover effects.

Finally, the endogenous choice of the liquid asset in my model is similar to the security design

setting in Duffie and Jackson [1989].

The outline of the paper is as follows. Section 1.2 introduces the model. Section 1.3 analyzes

the investor’s problem. Section 1.4 describes the population dynamics. Section 1.5 solves for

an equilibrium. Section 1.6 considers the impact of aggregate demand shocks. Section 1.7

discusses the impact of the liquid market on the OTC market. Section 1.8 concludes.

1.2 Model

I study an economy in which investors share endowment risk by trading two different assets

on, respectively, a liquid exchange and an OTC market. This model is an extension of Duffie,

6



1.2. Model

Gârleanu, and Pedersen [2007].

Assets and investors Two independent aggregate risk factors are described by the Brownian

motions(
Ba,t ,Bb,t

)
t≥0 .

Two risky assets, c and d , are exposed to these risk factors. The cumulative dividend payouts

of these assets satisfy

dDc,t = mc dt +ac dBa,t +bc dBb,t ,

dDd ,t = md dt +ad dBa,t +bd dBb,t .
(1.1)

These assets are available in net supplies Sc and Sd , respectively. As described below, the asset

c is traded on a centralized market, whereas the asset d is traded on a decentralized, OTC

market. For convenience, I define the vectors

ec
∆=

(
ac

bc

)
, ed

∆=
(

ad

bd

)

and call them the exposures of the assets c and d , respectively.There is also a risk-free asset,

available in perfectly elastic supply, and paying out dividends at the constant rate r > 0.9

The economy is populated by a continuum of investors. I write µ for a normalized measure

over this continuum. Each investor receives an endowment driven both by the aggregate risk

factors and by idiosyncratic shocks. More specifically, the cumulative endowment of investor

i satisfies

dηt = mη dt +ai ,t dBa,t +bi ,t dBb,t , (1.2)

and is thus driven by the two aggregate risk factors. The vector of exposures

ei ,t
∆=

(
ai ,t

bi ,t

)
(1.3)

evolves stochastically. Specifically, the stochastic vector ei ,t is a time-homogeneous Markov

9The interest rate is exogenous in all the models of asset pricing with search that I am aware of.
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chain jumping back and forth between two (two-dimensional) values.10 These two values are

e1
∆=

(
a1

b1

)
and e2

∆=
(

a2

b2

) (∈R2)
and I denote by(

−λ12 λ12

λ21 −λ21

)
(1.4)

the generator of the Markov chain. The Markov chains are independent across agents.

There are various ways to interpret the idiosyncratic shocks to the vectors of exposures. A

shock could represent a large loss incurred by an individual investing in assets that I do not

model explicitly, significant inflows or outflows experienced by a fund, a significant movement

in the inventory of a dealer, or the underwriting by a bank of a new bond issue. In all of these

cases, an idiosyncratic shock calls for an adjustment of the risk exposure.11 As summarized

by Cochrane [2005], no matter what the exact interpretation of these shocks is, their role is to

keep investors trading with each other.

Trading mechanisms Investors trade the liquid asset c on a centralized market. Investors ac-

cess this market without delay and trade without transaction costs. The only minor restriction

is that the number of shares held by an investor must belong to the range

[−K ,K ]

at any time, with K > 0 being a fixed, large number.12 Investors also trade the risk-free asset at

any time and without costs.

The other risky asset, d , is traded OTC. Trading d thus requires searching for a counter-party

and negotiating the details of the transaction. The search process is governed by a “random

matching". That is, a given investor gets in touch with another investor at the jump times of

an idiosyncratic Poisson process with intensityΛ. This other investor is randomly drawn from

across the population of investors. The draws are independent across meetings.

As the meeting intensityΛ controls the search friction on the OTC market, I call it the liquidity

10In particular, both components of the vector of exposures jump together.
11See Duffie et al. [2005] and Duffie et al. [2007] for discussions of these idiosyncratic preference shocks.
12This constraint is required by the verification argument et prevents doubling strategies. The constraint never

binds in equilibrium when K is chosen large enough, as seen in Proposition 10 below. Gârleanu [2009] adopts the
same type of restrictions.
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of the OTC market. Given the dynamics of a Poisson process, the inverse

ξ
∆= 1

Λ

of the liquidity is the expected search time until the next meeting. I call this expected time the

illiquidity of the OTC market.

Taking things together, investors from two separate subsets B and C of the population meet at

the rate

2Λµ(B)µ(C ), (1.5)

with µ being a measure on the set of investors. There is a factor 2 because the agents in B can

both find an agent in C and be found by one.13,14

Once two agents have met, they bargain over a possible trade in the illiquid asset d . Specifically,

they decide whether or not to exchangeΘ> 0 units of the asset and, if so, at which price. The

outcome of the bargaining is given by the generalized Nash bargaining solution. Θ is an

exogenous constant and the possible holdings in the illiquid asset d are restricted to two

values, zero andΘ.15

Working with a continuum of agents makes the model tractable and isolates the effect of search

frictions from, say, concerns of reputation or punishment. Moreover, actual OTC markets

often involve large numbers of investors and dealers, making a detailed modeling of the entire

market infeasible. For example, more than 600 dealers appear in the sample of corporate bond

trades analyzed by Schultz [2001]. Similarly, Li and Schürhoff [2012] study a network of several

hundred municipal bond dealers.16

13This statement is intuitive but non-trivial. More specifically, it assumes a certain Law of Large Numbers.
See Duffie and Sun [2011] for the rigorous treatment of this issue in discrete time and Footnote 35 for a similar
discussion.

14When appropriate, statements in this paper should be understood as holding almost surely.
15The assumption of a fixed transaction size is restrictive but both convenient and common. With fixed

transaction size, the bargaining regarding the size of a transaction is reduced to accepting the trade or not.
Alternatively, Lagos and Rocheteau [2007], Lagos and Rocheteau [2009], and Gârleanu [2009] let investors choose
their holdings freely, but model an intermittent access to a centralized market instead of bilateral meetings. Afonso
and Lagos [2011] and Cujean and Praz [2013] model bilateral markets with endogenous portfolio holdings.

16This hypothesis of a continuum of agents is common in the literature but sometimes criticized. The main
criticism is as follows. Actual OTC market are often dominated by a limited number of dealers who form the core
of the OTC market and market participants repeatedly and strategically interact with each other. Differently, in a
model with a continuum of agents and random matching, investors never trade twice with the same person and
this feature may prevent the model from capturing the working of actual OTC markets. This criticism is valid but
the advantages of working with a continuum of investors are strong, and I decided to work with a continuum. In
asset pricing with search, Duffie et al. [2005], Duffie et al. [2007], Vayanos and Wang [2007], and Weill [2007], for
instance, model a continuum of investors who trade bilaterally. Alternatively, papers such as Gofman [2010], Gale
and Kariv [2007], Malamud and Rostek [2012], and Babus and Kondor [2013] study decentralized trading among a

9
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My second comment regards the matching technology (1.5). Other specifications exist in the

literature.17 However, the matching technology (1.5) has two advantages. First, as argued

in Weill [2008], it results from an explicitly specified search process and the existence of this

random matching is, partly, justified by the discrete time results in Duffie and Sun [2011].

Second, it exhibits increasing returns to scale. In the context of real assets, Gavazza [2011]

argues that increasing returns to scale is an intuitively appealing and empirically important

feature of search markets.

Preferences Each investor i maximizes her expected utility from consumption. Her utility

function U has a constant coefficient of absolute risk aversion γ > 0 (exponential or CARA

utility), meaning that

U : c 7→ −e−γx ,

and their subjective rate of discounting is ρ > 0. The consumption and investment policy of i

is thus dictated by the optimization

sup
c̃

E

[∫ ∞

0
e−ρuU (c̃u) du

∣∣∣∣Fi ,0

]
, (1.6)

with the admissible consumption processes c̃ satisfying certain conditions defined below and

Fi ,0 being all the information available and relevant to i at time 0.

The payouts of the risky assets, defined in (1.1), are independent and identically distributed

across time. Furthermore, the idiosyncratic exposure shocks defined by (1.4) offer a unique

and stable stationary distribution of types 1 and 2 across the population. As a result, I expect

all the aggregate quantities to be constant in the long run and I focus my analysis on this

asymptotic, stationary case.18,19 In a stationary equilibrium, the information set Fi ,0 only

contains idiosyncratic quantities and the individual problem (1.6) becomes

V (w, iθ)
∆= sup

c̃
E

∫ ∞

0
e−ρuU (c̃u) du

∣∣∣∣∣∣∣
w0 = w

e0 = ei

θ0 = θ

 , (1.7)

with w0 being the wealth invested by i at time zero in either the liquid risky asset c or in the

finite number of investors.
17Weill [2008] and Inderst and Müller [2004], for instance, use more general matching technologies to study

search problems in finance.
18I consider the impact of aggregate risk in Section 1.6.
19The cross-sectional distribution of wealth is not necessarily constant over time. However, the equilibrium

policies are independent of the wealth, thanks to the CARA preferences, and this non-stationarity has no impact
on the equilibrium portfolios and prices.
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1.2. Model

risk-free asset, e0 being i ’s vector of exposures at time zero, and θ0 ∈ {0,Θ} being i ’s holdings

in the illiquid asset at time zero. The optimization takes place over the set of consumption

processes that satisfy the budget and admissibility constraints discussed below.

Budget constraint The consumption and trading of an investor must be consistent with the

dynamics of her wealth. Specifically,

dw̃t = r w̃t dt − c̃t dt + dηt + θ̃t dDd t + π̃t ( dDct − r Pc dt )−Pd dθ̃t , (1.8)

with π̃t being the number of shares of the liquid asset c held at time t , Pc being the price of the

liquid asset c and Pd being the price of the illiquid asset d . As the asset d is traded bilaterally,

defining the dynamics of the holdings θ̃t in d and the price Pd at which it trades requires some

extra care.

Two investors trade the asset d if the transaction is in their best interest. Investor a sells the

illiquid asset to investor b if there exists a price P̃d that satisfies both

V
(
wa +ΘP̃d , ia0

)≥V (wa , ia ,Θ) , (1.9)

meaning that it is rational for a to sell, and

V
(
wb −ΘP̃d , ibΘ

)≥V (wb , ib0) , (1.10)

meaning that it is rational for b to buy.20 If a trade is rational for the two counter-parties, the

Nash bargaining solution determines the transaction price Pd . That is, Pd satisfies

Pd ∈ argmax
P̃d

{ (
V

(
wa +ΘP̃d , ia ,0

)−V (wa , ia ,Θ)
)ηΘ

·(V
(
wb −ΘP̃d , ib ,Θ

)−V (wb , ib ,0)
)η0

}
, (1.11)

with ηΘ ∈ (0,1) being the bargaining power of the seller and η0 = 1−ηΘ being the bargaining

power of the buyer.

The bilateral trading introduces a structure of rational expectations in the investor’s problem.

An investor takes as given both her own value function and those of the counter-parties she

will meet. This investor then deduces the prices at which she will trade the illiquid asset, and

deduces her own actual value function. A solution to the investor’s problem thus consists

in rational expectations regarding the value functions. I must still impose certain regularity

conditions on the consumption processes.

20The wealth of a prior to the trade is wa , its vector of exposures is eia , etc.
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Regularity The wealth process w̃ satisfies

lim
T→∞

e−ρT E
[
e−rγw̃T

]= 0. (1.12)

The requirement (1.12) excludes pathological wealth processes and is needed in the verifi-

cation argument for the Hamilton-Jacobi-Bellman (HJB) equations.21 Pathological wealth

processes include doubling strategies and the “financing” of consumption by an ever increas-

ing amount of debt.

Finally, for ease of exposition, I restrict the model parameters as follows.

Assumption 1. The dynamic of the exposure shocks, as described by (1.4), and the supply Sd

of the illiquid asset d satisfy

λ12

λ12 +λ21
6= Sd 6= λ21

λ12 +λ21
.

Also, the vectors ed , ec , and e1 −e2 are not collinear.

Assumption (1) prevents the lengthy treatment of non-generic cases.22

1.3 The Investor’s Problem

I characterize the solution to the investor’s problem (1.7) by the dynamic programming ap-

proach, meaning that I deduce the optimal consumption and trading policy from a HJB

equation.23

Along an optimal path (π∗,θ∗,c∗, w∗), the process(∫ t

0
e−ρsU (c∗s ) ds +e−ρt V

(
w∗, itθ

∗
t

))
t≥0

=
(
E

[∫ ∞

0
e−ρsU (c∗s ) ds

∣∣∣∣Ft

])
t≥0

must be a martingale. Equating the expected dynamics of this process to zero and assuming

that pointwise maximization characterizes the optimal consumption and investment policy

21The verification argument is the Appendix A.
22I endogenize the risk-profile ec in Section 16. The assumption regarding the non-collinearity of the vectors of

exposures will hold in this case if ed and e1 −e2 are not collinear
23The idiosyncratic exposure shocks and the idiosyncratic search processes make the markets incomplete.

Further, the illiquid holdings can only be adjusted at stochastic times and are restricted to two values. A martingale
approach along the lines of Karatzas, Lehoczky, and Shreve [1987] and Cox and Huang [1989] does not seem easily
applicable.
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yields the HJB equation

ρV (w, iθ) = sup
c̃,π̃

U (c̃)

+ ∂V

∂w
(w, iθ)

(
r w − c̃ +mη+θmd + π̃ (mc − r Pc )

)
+ 1

2

∂2V

∂w2 (w, iθ)
(
1 θ π̃

)
Σi

(
1 θ π̃

)∗
+λi ī

(
V (w, īθ)−V (w, iθ)

)
+2ΛEµ(b) [1surplus

(
V (w − (θ̄−θ)Pd , i θ̄))−V (w, i ,θ)

)]
,

(1.13)

with the matrix of covariations

Σi
∆= 1

dt
d〈

 ηt

Dd ,t

Dc,t

 ,
(
ηt Dd ,t Dc,t

)
〉

=

 a2
i +b2

i ai ad +bi bd ai ac +bi bc

ai ad +bi bd a2
d +b2

d ac ad +bc bd

ai ac +bi bc ac ad +bc bd a2
c +b2

c

 ,

(1.14)

for i ∈ {1,2} and θ ∈ {0,Θ}.24,25 On the right-hand side of (1.13), the fifth line represents the

utility gains resulting from trading on the OTC market. The indicator function

1surplus

appears in the equation because not every meeting results in a trade. More specifically, two

investors only exchange the illiquid asset if they have a surplus to share, meaning that both

(1.9) and (1.10) hold. Furthermore, the transaction price Pd may depend on the counter-party

b and is characterized by (1.11). The other terms on the right-hand side of (1.13) refer to

the current consumption, the drift and volatility of the wealth, and shocks to the vector of

exposures. To characterize, the solution to (1.13) I make the following assumption.26

Assumption 2. The value functions satisfy

V (w, iθ) =−e−α(w+a(iθ)+ā),

for a set of numbers α ∈R>0, a ∈R4, and ā ∈R to be characterized.

Assumption 2 will be justified ex post by an existence result. Conditional on Assumption 2, the

24I write “·̄” for “the other possible value”. For example, if i = 1, then ī = 2.
25For convenience, I index the entries of Σi by i , d , and c.
26This functional form is standard for problems similar to the one at hand. It is used, among others, by Duffie,

Gârleanu, and Pedersen [2007], Vayanos and Weill [2008], and Gârleanu [2009].
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optimal policy of the investors is known in closed-form. First, the trading on the OTC market

occurs as described below.

Proposition 3 (OTC trading). On the OTC market, investors trade as follows.

1. Investors with exposure type 1 sell the illiquid asset to those with type 2 exposure when

a(2Θ)−a(20) > a(1Θ)−a(10). (1.15)

In particular, the decision to trade does not depend on the wealth of the investors.

2. Investors with exposure type 2 sell the illiquid asset to those with type 1 exposure when

a(2Θ)−a(20) < a(1Θ)−a(10). (1.16)

The decision to trade does not depend on the wealth of the investors either.

3. If a i -investor sells the illiquid asset to a ī -investor, the transaction price Pd is the unique

solution to(
1−η0

)(
1−eα(a(i 0)+PdΘ−a(iΘ))

)
= η0

(
1−eα(a(īΘ)−PdΘ−a(ī 0))

)
. (1.17)

This solution is available in closed-form.27

Proof. See Proof 38 in Appendix D.

The proposition shows that the bargaining outcomes on the OTC market depend on the

exposures (and holdings) of the counter-parties but not on their wealth. As investors are only

interested in the rest of the population to the extent that it represents potential counter-parties,

I call type of an agent the combination of her exposure, indexed by 1 or 2, and her illiquid

holdings, 0 orΘ.

The characterization of the transactions on the OTC market in terms of inequalities (1.15) and

(1.16) is intuitive. Recalling Assumption 2 regarding the value functions, the difference

v(iΘ)− v(i 0), i = 1,2,

27Equation (1.17) is quadratic in

x
∆= exp

(
αΘPd

)
(> 0)

and admits a unique positive solution. This unique solution readily defines Pd .
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is the reservation value of a i -agent for the illiquid asset. Inequality (1.15) thus states that the

reservation value of the 2-agents is higher than that of the 1-agents. In this case, the 2-investors

buy the illiquid asset from the 1-investors. Inequality (1.16) is just the opposite.

I can also characterize the optimal consumption and investment in the liquid asset.

Proposition 4 (Consumption and Liquid Holdings). The optimal consumption is

c(iθ) = 1

γ

(
α (w +a(iθ)+ ā)− log

(
α

γ

))
and the optimal holdings in the liquid asset are

π(iθ) = 1

Σcc

(
1

α
(mc − r Pc )− (Σi c +Σcd )

)
, (1.18)

for any type iθ and liquid wealth w.

Proof. See Proof 39 in Appendix D.

Combining the HJB equation (1.13) with Lemma 3 and Lemma 4 provides a narrower charac-

terization of the value function.

Proposition 5 (Value Functions). The constants in the value function

V (w, iθ) =−exp(−α (w +a(iθ)+ ā)) ,

are characterized as follows. First, α= rγ. Furthermore, choosing

ā = 1

rγ

(
−1+ ρ

r
+γmη+ log(r )

)
, (1.19)

and taking the cross-sectional distribution of types µ
(∆)= {

µ(iθ)
}

iθ as given, the type specific

constants “a(iθ)" are the unique solution to the system

r a(iθ) =κ(iθ)+λi ī

(
e−rγ(a(īθ)−a(iθ)) −1

−rγ

)
+2Λµ(ī θ̄)

[
χ

(
ηθ,εiθ (a)

)
−rγ

]+
,

i ∈ {1,2},θ ∈ {0,Θ},

(1.20)

with the quantity

κ(iθ)
∆=θmd +π(iθ) (mc − r Pc )− 1

2
rγ

(
1 θ π(iθ)

)
Σi

(
1 θ π(iθ)

)∗
, (1.21)
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measuring the mean-variance benefits of the risk-profile, the function

εiθ : {a}iθ 7→ a(īθ)−a(ī θ̄)+a(i θ̄)−a(iθ) (1.22)

measuring the surplus that a iθ-investor may be able to share on the OTC market, and the

function

χ : (0,1)×R→R

(η,ε) 7→ 2
(
1−η)

1−2η+
√

(2η−1)2 +4η(1−η)erγε
−1

(1.23)

mapping a bargaining power and a surplus to the utility change induced by a trade OTC.28,29,30

Proof. See Proof 40 in Appendix D.

Equation (1.20) decomposes the expected utility of an agent into the sum of three terms. First,

there is a flow of mean-variance benefits resulting from an investor’s risk profile. Second, there

are the shocks to the vector of exposures. Finally, there are the benefits resulting from trading

on the OTC market. The benefits resulting from trading on the liquid market do not appear

explicitly in Equation (1.20) but are contained in the flow “κ (iθ)" of mean-variance benefits.

Intuitively, the quantity

S
∆= (κ(2Θ)−κ(20))+ (κ(10)−κ(1Θ)) (1.24)

indicates whether transferring the illiquid asset from a 1Θ-investor to a 20-investor increases

the overall flow of mean-variance benefits.31 S should then also indicate whether a sale of

the illiquid asset by a 1Θ-investor to a 20-investor is profitable in equilibrium or not. As stated

in Proposition 10 below, this is indeed the case. To characterize an equilibrium, I must first

characterize the distribution of types across the population.

28I abuse notation and write µ both for a measure on the set of investors and for the distribution of the type of
the investors under µ. µ defines the type distribution but not the other way around.

29I write [x]+ ∆= max{0, x} for the positive part of a number.
30When all investors have the same bargaining powers, ηθ = 1/2, the function χ significantly simplifies. Namely,

χ

(
1

2
, x

)
= 1p

ex
−1.

31I write S like in risk sharing.

16



1.4. Cross-Sectional Distribution of Types

1.4 Cross-Sectional Distribution of Types

The type of a given agent changes either because of a shock in her endowment correlations, or

because she traded on the decentralized market. As described in Proposition 3, two mutually

exclusive trade patterns can exist on the decentralized market, depending on which agents

have the higher valuation. Investors endogenously choose which trading pattern they follow

but, for this section, I assume the following.

Assumption 6. Agents with the exposure type 2 buy the illiquid asset.

Recalling both the dynamics of the endowment correlations assumed in Equation 1.4 and the

linear matching technology assumed in Equation 1.5, the type distribution µ must satisfy the

stationary Kolmogorov forward equation
0 = µ̇(10) = 2Λµ(1Θ)µ(2l ) −λ12µ(1l ) +λ21µ(2l )

0 = µ̇(1Θ) = −2Λµ(1Θ)µ(2l ) −λ12µ(1h) +λ21µ(2Θ)

0 = µ̇(2l ) = −2Λµ(1Θ)µ(2l ) −λ21µ(2l ) +λ12µ(1l )

0 = µ̇(2Θ) = 2Λµ(1Θ)µ(2l ) −λ21µ(2Θ) +λ12µ(1Θ)

. (1.25)

On the right-hand side of each equation, the first term refers to trading, and the other ones to

endowment shocks.32 Also, µ, being a density, must satisfy both

µ(10)+µ(1Θ)+µ(20)+µ(2Θ) = 1 (1.26)

and (
µ(1Θ),µ(10),µ(2Θ),µ(20)

) ∈R4
+. (1.27)

Finally, the OTC market has to clear, meaning that every unit of the illiquid asset d must be

held by someone. This is expressed by imposing the condition

Θ
(
µ(1Θ)+µ(2Θ)

)= Sd . (1.28)

As seen from (1.26), (1.27), and (1.28), the population can absorb at mostΘ units of the asset

d . This imposes the constraint

0 ≤ Sd

Θ
≤ 1 (1.29)

on the exogenous parameters of the model.

32The terms referring to trading only involves trades between agents with different endowment correlation.
However, according to Proposition 3, agents with the same endowment correlations, but different holdings will
also trade. However, as such agents will only swap their types, this has no impact on the distribution of types.
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Chapter 1. Equilibrium Asset Pricing with both Liquid and Illiquid Markets

As shown in Duffie et al. [2005], the system defining the stationary distribution is well-behaved.

I recall their result for convenience.

Proposition 7 (Duffie et al. [2005], Proposition 1). There exists a unique stationary type distri-

bution that is reached from any initial distribution.

Proof. For convenience, I partially recall the argument of Duffie et al. [2005] in Proof 41, in

Appendix D.

If Assumption 6 fails and 1-investors buy the illiquid asset, then all statements in this section

1.4 are still valid, up to a systematic swap of the indexes 1 and 2.33

There are thus only two possible stationary distribution. I denote the one arising under

Assumption 6 by µ1h→2l and the other by µ2h→1l . In equilibrium, the trade surplus

εiθ
(∆)= a(i θ̄)−a(iθ)+a(īθ)−a(ī θ̄)

decides which type distribution obtains, in the sense that

µ (a) = 1{ε1Θ(a)>0}µ
1Θ→2l +1{ε2Θ(a)>0}µ

2Θ→1l . (1.30)

The trade surpluses define the trading pattern on the OTC market via the Nash bargaining

solution characterized in Proposition 3. In turn, the trading pattern defines the stationary

distribution of types via the flow equations (1.25).

Finally, it may be useful to consider the behavior of the type distribution when the OTC market

is relatively liquid. The exact asymptotic behavior depends on the relationship between the

supply Sd of the illiquid asset and the proportion of investors

µ2
∆= λ12

λ12 +λ21

33Strictly speaking, I should still consider the borderline case for which all investors have the same reservation
value for the asset and are indifferent between buying and selling the illiquid asset. This case can arise but is
non-generic in the exogenous parameters. Further, when the surplus to share on the OTC market is exactly zero,
I should make additional assumptions regarding when a bilateral trade occurs. For these two reasons, I do not
explicitly analyze this case. In proposition 10 I exactly characterize when this non-generic case arises.
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1.4. Cross-Sectional Distribution of Types

having a high valuation for this illiquid asset.34,35 In remaining of the paper I assume

µ2 > Sd

Θ
. (1.31)

Under this assumption, the “marginal” buyer of the asset d in a Walrasian setting would have

a high valuation for the asset. By marginal buyer I mean the investor that would buy the

additional units of the illiquid asset, should Sd be marginally increased.36

Proposition 8. Under assumption (1.31), the equilibrium density satisfies
µ(10)

µ(1Θ)

µ(20)

µ(2Θ)

=µW + 1

Λ
δµ


−1

1

1

−1

+o

(
1

λ

)
14, (1.32)

with the limit value and sensitivities

µW ∆=


1− Sd

Θ
Sd
Θ −µ2

0

µ2•

 , δµ
∆= λ12

2

Sd
Θ

µ2 − Sd
Θ

and with 14 ∈R4 being the vector whose components are all equal to 1.

Proof. See Proof 44 in Appendix D.

The asymptotic expressions above can be understood intuitively. The common absolute

value of the four components of the first order correction reflects the functioning of the

34Similarly, I define

µ1
∆= λ21

λ12 +λ21

as the proportion of investors with a low valuation for the illiquid asset.
35 Recalling (1.4), the description of µ2 as the proportion of 2-investors across the population intuitive. Whether

it is correct or not, however, is far from trivial. Indeed, this statement identifies the proportion of time spent by a
given agent in a given state and the proportion of agents across the population who currently are in that state. This
requires the application of a certain Law of Large Numbers across the population. See Sun [2006] for a rigorous
treatment of this issue.

36All the derivations could be done assuming the inequality opposite to 1.31. However, assumption 1.31 makes
sure that the illiquidity discount is positive, meaning that the illiquidity of the OTC market decreases the value
of the asset OTC. Thinking about bond markets and the well-documented positive liquidity spreads on bonds,
this seems to be a desirable model feature. For this reason, presumably, assumption (1.31) and variants thereof
recurrently appear in the literature. See, for instance, Condition 1 in Duffie et al. [2005], Equation (1) in Weill [2008],
or Assumption 2 in Vayanos and Weill [2008].
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Chapter 1. Equilibrium Asset Pricing with both Liquid and Illiquid Markets

decentralized market. That is, every time one potential buyer and one potential seller meet,

a transaction occurs, and they become a satisfied holder of the asset d and one satisfied

non-holder, respectively.

1.5 Stationary Equilibrium

In this section I define and characterize an equilibrium of the model. In other words, I make

the individual decisions consistent with the aggregate quantities in the economy.

For the centralized market, I use a classical Walrasian equilibrium concept. Specifically, as

seen in Proposition 4, the only aggregate quantity affecting the liquid holdings is the price

Pc of the liquid asset. I thus impose the consistency between the individual and aggregate

quantities by requiring the price Pc to be so that the centralized market clears.

Turning to the OTC market, the decisions to trade or not and, if so, at which price, are dictated

by the parametrization

a = {a(iθ)}iθ

of the value functions (see Proposition 3).

Now, on the one hand, the individual trading decisions on the OTC market yield a certain

type distribution, characterized in Section 1.4. On the other hand, a also depends on the

distribution of types across the population. This is clear at both the intuitive and technical

levels. Intuitively, it is clear because the utility of an investor searching for a counterparty on an

OTC market should depend on the likelihood of finding such a counterparty. Technically, it is

clear because a is a solution to the HJB equation (1.20), an equation in which the distribution

µ appears.

I will thus impose the equilibrium condition that the type distribution assumed when writing

the HJB equation (1.20) and the one generated by the solution to (1.20) are equal. I formalize

this discussion as follows.

Definition 9. A stationary equilibrium of the model consists of a price Pc (∈R), a collec-

tion of liquid holdings {π(iθ)}iθ
(∈R4

)
corresponding to each type, a distribution of types

{µ(iθ)}iθ
(∈R4

)
, and the constants {a(iθ)}iθ

(∈R4
)

defining the value functions. The equilib-

rium quantities satisfy three conditions.

1. An investor of type iθ who takes the price Pc as given optimally invests the amount

{π(iθ)}iθ in the liquid asset c.
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1.5. Stationary Equilibrium

2. The centralized market clears, meaning that

Eµ(iθ) [π(iθ)] = Sc .

3. The value functions and stationary type distribution are consistent. Specifically, the

vector

a = {a(iθ)}iθ

solves the HJB equation (1.20) when the type distribution is µ (ε1h (a)).37

I now state the main result of this section.

Proposition 10. There exists exactly one equilibrium of the model. In equilibrium, 2-agents

have a high valuation of the illiquid asset d exactly when

det
((

ed ec

))
·det

((
e1 −e2 ec

))
> 0, (1.33)

with ec , ed , e1, and e2 being the exposures to the aggregate factors of the liquid asset, the illiquid

asset, and the endowments, respectively.

Furthermore, the equilibrium price of the liquid asset is

Pc = mc

r
−γ(

Σcc Sc +Σηc +Σcd Sd
)

, (1.34)

with

Σηc
∆=µ1Σ1c +µ2Σ2c

being the average correlation between the endowments and the dividends of the liquid asset,

and the equilibrium holdings of the four types are

π(iθ) = Sc + 1

Σcc

((
Σηc −Σi c

)+Σcd (Sd −θ)
)

, (1.35)

for i = {1,2} and θ = {0,Θ}.

Proof. See Proof 45 in Appendix D.

As Equation (1.34) shows, the liquidity Λ of the OTC market does not affect the price of the

liquid asset. This result can be understood intuitively. Indeed, the search friction makes the

37The distribution µ
(
ε1h (a)

)
, a function of the trade surplus, is defined in (1.30).
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Chapter 1. Equilibrium Asset Pricing with both Liquid and Illiquid Markets

asset allocation inefficient. Illiquidity thus increases the proportion of investors who short

the liquid asset because they have not yet found a counter-party to buy their illiquid holdings.

These investors reduces the aggregate demand for the liquid asset. At the same time, the

search friction also increases the number of investors who buy the liquid asset while trying to

increase their illiquid holdings. This second demand compensates the first one and, overall,

the search friction does not affect the price of the liquid asset. It is true, however, that the two

types of hedging demand exactly offset each other because there is no aggregate uncertainty.

In Section 1.6, I consider aggregate demand shocks and, in this case, the frictions in the OTC

market affect the price of the liquid asset.

Having a market friction that impacts individual policies but not prices is reminiscent of

several references. Gârleanu and Pedersen [2004] documents a similar effect in a setting with

adverse selection, and so does Gârleanu [2009] in a setting with search friction and a unique

market. The conclusions of Rostek and Weretka [2011] are similar as well, but with illiquidity

measured as a price impact.

There is also a short technical argument explaining why the equilibrium price of the liquid

asset is independent of the illiquidity of the OTC market. Proposition 4 shows that the optimal

holdings in the liquid asset are linear both in the covariance Σi c of the endowment with the

payouts of c and in the illiquid holdings θ. Now, the cross-sectional average of the endowment

correlations is independent of the illiquidity of the decentralized market. Indeed, the corre-

lations define which holdings agents intend to hold, and this is independent of how much

time it will actually take to obtain these holdings. Similarly, the cross-sectional average of

the illiquid holdings is a matter a market-clearing, and not of illiquidity per se. Taking things

together, as the optimal holdings in the illiquid asset are linear in the model parameters, and

as the cross-sectional averages of these parameters are independent of the liquidity level, so is

the aggregate demand, and so is the price of the liquid asset c.

The condition (1.33) characterizes which investors have the higher valuation for the illiquid

asset and is rather intuitive. The first term of the product,

det
((

ed ec

))
,

measures how orthogonal the risk profiles of the liquid and illiquid assets are. Phrased differ-

ently, this first term measures how much risk sharing can be achieved on the OTC market only.

The second term in the product,

det
((

e1 −e2 ec

))
,

again compares how orthogonal two vector of exposures are. The first vector, e1 − e2, is the

risk-profile that 2-investors should buy to achieve an optimal risk-sharing. The second vector
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1.5. Stationary Equilibrium

is again the risk profile of the liquid asset. As a result, this second term measures how much

risk-sharing is left once agents have chosen their exposure on the liquid market.

Finally, the product of the two terms is positive exactly if the exposure that is specific to the

OTC market and the risk-sharing that cannot be achieved on the liquid market “overlap”.

Figure 1.2 offers a visual interpretation of the condition (1.33).

This discussion shows that the buyers of the illiquid asset are necessarily those investors to

whom the fundamentals of the illiquid asset offer high diversification benefits. In particular,

even if illiquidity distorts the value functions and prices, it does not modify an agent’s decision

to hold an asset or not. Even in an illiquid market, the fundamentals of the asset guide this

decision.

Finally, the condition (1.33) is equivalent to S > 0, with S defined in (1.24).

In general, the equilibrium quantities for the decentralized market are cumbersome to deal

with. Specifically, I cannot characterize the parametrization a of the value functions in closed-

form. Explicit expressions for a certain asymptotic case are available in Appendix A.

On the technical side, the existence and uniqueness result of Proposition 10 appears to be

new. More specifically, in Duffie, Gârleanu, and Pedersen [2005], the equilibrium quantities

are known in closed-form but only because agents are assumed to be risk neutral. This setting

was then extended by Duffie, Gârleanu, and Pedersen [2007], Vayanos and Weill [2008], and

others to accommodate risk-averse (CARA) agents. In these cases, the authors showed how,

asymptotically, the solutions to these models were formally equivalent to those encountered in

settings with risk-neutral agents. However, the asymptotic analyses involved either a vanishing

risk-aversion, or a vanishing heterogeneity of the agents. My argument does not need these

assumptions.38

Thanks to Proposition 10, I can characterize the equilibrium dispersion of holdings in the

liquid asset.

Corollary 11. The mean absolute deviation of the holdings in c,

Eµ(iθ) [|π(iθ)−Sc |] ,

is increasing in the illiquidity 1
Λ of the OTC market.

The proof of Corollary 11 follows directly from (the proof) of Proposition 7 and from Proposi-

tion 10. Proposition 7 characterizes the equilibrium distribution of types and Proposition 10

38Gârleanu [2009] sketches an existence argument for an alternative model of illiquid market. However, in his
setting, prices are Walrasian and not bargained, which modifies the structure of the equilibrium.
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Chapter 1. Equilibrium Asset Pricing with both Liquid and Illiquid Markets

characterizes the equilibrium holdings in c.

Corollary 11 is exactly in line with the findings of Oehmke and Zawadowski [2013] regarding

CDS and bond markets. Indeed, Oehmke and Zawadowski [2013] find that the CDS market is

used as a liquid alternative to an illiquid bond market, and that the dispersion of holdings in

CDS contracts is increasing in the illiquidity of the bond market.

My model also has predictions regarding the trading volumes on the two markets. I define

the trading volume as the number of shares of an asset that is traded per unit of time. On the

illiquid market, trades occur at the rate

2Λµ(1Θ)µ(20)

when the inequality (1.33) holds, and each trade involves the exchange ofΘ units of the illiquid

asset. The trading volume on the illiquid market is thus

2Λµ(1Θ)µ(20)Θ.

Investors trade infrequently even on the liquid market. This is a consequence of the CARA

preferences and of the trade motives being driven by infrequent jumps and not by diffusions.

Namely, there are six possible type changes and each of them occurs with a given intensity.

These six type changes are

type change rate triggered by

10 → 20 λ12µ(10) correlation shock

1Θ→ 2Θ λ12µ(1Θ) correlation shock

1Θ→ 10 2Λµ(1Θ)µ(20) OTC trade

20 → 2Θ 2Λµ(1Θ)µ(20) OTC trade

20 → 10 λ21µ(20) correlation shock

2Θ→ 1Θ λ21µ(2Θ) correlation shock

.

The trading volume on the liquid market is then

Vol =1

2

( ∑
type changes

(rate)× (size of trade)

)

=1

2



λ12µ(10) |π(10)−π(20)|
+λ12µ(1Θ) |π(1Θ)−π(2Θ)|

+2Λµ(1Θ)µ(20) |π(1Θ)−π(10)|
+2Λµ(1Θ)µ(20) |π(20)−π(2Θ)|

+λ21µ(20) |π(20)−π(10)|
+λ21µ(2Θ) |π(2Θ)−π(1Θ)|



,
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1.5. Stationary Equilibrium

with the factor 1/2 recalling that each purchase must be matched by a sale.

Combining (the proofs of) Propositions 7 and Proposition 10 yields the following:

Corollary 12. The trading volumes on both markets are decreasing in the illiquidity level

ξ= 1/Λ.

Proof. See Proof 46 in Appendix D.

Corollary 12 shows how the liquid and the illiquid assets are complements in terms of trading

volumes, with the trading volumes on both markets increasing and decreasing together. Inter-

estingly, this relationship between the trading volumes holds independently of whether the

assets are complements or substitutes in terms of risk-exposure. This relationship between

the trading volumes is driven by the use of the liquid asset as a hedging instrument, as detailed

in Proposition 13.

Proposition 12 also deserves to be compared with a result from Longstaff [2009]. Longstaff

[2009] proposes a model in which, for a given period, only one of two assets can be traded.

Longstaff [2009] then concludes that illiquidity increases a certain measure of the trading

activity in the liquid asset. This is obviously in contradiction with my conclusion. The origin

of this divergence is in the preferences of the agents.

In my model, investors with CARA preferences intend to keep their holdings fixed essentially

all the time. A re-balancing is triggered only by a preference shock or by a wish to adjust the

liquid holdings as the result of a change in the illiquid holdings. However, making bilateral

transactions more difficult makes the trade motives even less frequent, and reduces trading

volumes.

Quite differently, in Longstaff [2009], investors have a constant relative risk aversion (CRRA)

and want to constantly re-balance their holdings in both assets. Now, if trading in one of them

is impeded, this is compensated by trading the other one more intensively, which induces the

trading volume increase.

I now provide a more detailed characterization of trading on the centralized market.

Proposition 13. Opening the OTC market strictly increases the trading volume Vol on the liquid

market.

Furthermore, if the inequality

det
((

ed ec

))
·det

((
e1 −e2 ec

))
(ec · (e1 −e2)) (ec ·ed ) > 0 (1.36)
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holds, the search frictions on the OTC market discontinuously increase the trading volume on

the liquid market. In mathematical terms,

lim
Λ→∞

Vol(Λ) > VolW ,

with VolW being the trading volume in c if the asset d is traded on a competitive (Walrasian)

market.39 If (1.36) does not hold, the asymptotic trading volume with a vanishing friction and

the Walrasian trading volume coincide.

Proof. See Proof 47 in Appendix D.

This last result shows how the search friction on the OTC market can generate some additional,

or “excessive", trading on the centralized market. Intuitively, this arises from the investors’ use

of the liquid asset as an imperfect substitute for the illiquid asset.

1.6 Aggregate Demand Shocks

The price impact of illiquidity can be driven both by the illiquidity level and by the illiquidity

risk, that is, by time variation in illiquidity.40

In my model, liquidity is understood as the time it takes to complete a transaction on the OTC

market. More specifically, in the steady state, an investor who is attempting to sell her illiquid

holdings measures illiquidity as

1

Λ

1

P[ sell the asset |contacted an investor]
,

meaning as the expected time until the sale is completed. The meeting intensityΛ represent

the technology used by investors to contact each others and is unlikely to change in unpre-

dictable ways over time. The probability of completing the trade, P[ sell|contacted], however,

is determined by the distribution of preferences across the population of investors and this

distribution can reasonably be assumed to evolve stochastically, leading to illiquidity risk.

In this section, I introduce time variation in liquidity by assuming that the proportion of agents

with a high valuation for the illiquid asset is driven both by aggregate and by idiosyncratic

39I consider a Walrasian setting in which investors can trade d whenever they want, at no cost, and taking the
price Pd ,W of the asset d as given, but I maintain the constraint that the holdings in d must belong to {0,Θ}.

40The importance of illiquidity risk was emphasized by Pastor and Stambaugh [2003] and Acharya and Pedersen
[2005], and further analyzed by Bongaerts et al. [2011], Junge and Trolle [2013], and Mancini et al. [2013].
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1.6. Aggregate Demand Shocks

shocks. The aggregate shocks occur at the jump times of the Poisson process(
N a

t

)
t≥0

whose intensity is λa . The proportion of 2-agents after such an aggregate shock is drawn from

a distribution M2 and the draws are independent across aggregate shocks.

I still assume ex ante that 2-agents have the high valuation and verify ex post this assumption.

Furthermore, I assume that the support of the distribution after an aggregate shock satisfies

supp(M2) ⊂
(

Sd

Θ
,1

]
.

This maintains a high valuation for marginal investors at any time or, equivalently, maintains

a positive illiquidity discount.

In mathematical terms, these assumptions translate into the dynamics

dµ2(t ) =−λ21µ2(t−)+λ12µ1(t−)+ (
m2 −µ2(t−)

)
dN a

t , m2 ∼ M2, (1.37)

for the proportion µ2(t) of 2-investors at time t . Note that, between two aggregate shocks,

this proportion evolves deterministically. Using a formalism similar to the one in Duffie et al.

[2005], I index the state of the system by the last aggregate shock and the time elapsed since

this last shock.41,42 For example, the proportion of 2-investors t units of time after it jumped

to m2 is

µ2(m2, t ) = e−(λ12+λ21)t m2 +
(
1−e−(λ12+λ21)t

) λ12

λ12 +λ21
(1.38)

In particular, if no aggregate shock has occurred for a long time, and independently of the last

shock, the proportion of 2-investors converges toward the same level. I write

µ2(∞)
∆= λ12

λ12 +λ21

41In Duffie et al. [2005] the distribution after the shock is concentrated on one point, meaning that the state of
the system can be indexed by the time since the last shock only.

42The last aggregate shock should be represented by the entire distribution(
µa (1l ),µa (1h),µa (2l ),µa (2h)

)
reached after the aggregate exposure shock occurred. In the asymptotic case I consider, however, only the
proportion

µa
2

(∆)= µa (2l )+µa (2h)

of high valuation investors matter. As a result, I abuse notations and index the current state of the economy by the
last draw from ma
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for this level.43

I must still specify the shocks at the individual level that will generate the aggregate dynamics

(1.37). I do so by assuming, for a proportion of 2-investors jumping from µ2(t−) to m2, that

each 2-investor has a probability

δ
(
2;µ2(t−);m2

) ∆= max

{
0;
µ2(t−)−m2

µ2(t−)

}
(1.39)

of becoming type 1 and that each 1-investor has a probability

δ(1;µ2(t−);m2)
∆= max

{
0;

m2 −µ2(t−)

1−µ2(t−)

}
(1.40)

of becoming type 2. Assuming that a suitable version of the strong law of large numbers

(SLLN) holds cross-sectionally, these idiosyncratic shocks will be consistent with the aggregate

dynamics (1.37).44

As far as the type distribution is concerned, the state of the economy can be described by the

last aggregate valuation shock and the time elapsed since that shock. Furthermore, the type

distribution evolves continuously between two aggregate valuation shocks. I thus assume the

same type of evolution for both the price of the liquid asset and the value functions.

I assume that the equilibrium price process of the liquid asset is a function

Pc (m2, t ) (1.41)

of the last aggregate liquidity shock and of the time elapsed since this last shock. I also assume

that this price is differentiable in time. Under this assumption on the price process, the budget

constraint of an investor becomes

dwt = r wt dt − ct dt + det +θt dDd ,t +πt
(
Ṗc,t dt + dDc,t − r Pc,t

)−Pd ,t dθt , (1.42)

with w being the wealth invested at the risk-free rate or in the liquid asset, c being the con-

sumption, θ being the holdings in the illiquid asset, π being the holdings in the liquid asset,

43In the stationary setting of Section 1.5, I simply denoted the quantity µ2(∞) by µ2. In this Section 1.6 I add
“∞” as a time argument to avoid confusion.

44This is seen by verifying that

µ2(t−)
(
1−δ(

2;µ2(t−),m2
))+µ1(t−)

(
δ

(
1;µ2(t−),m2

))= m2.

Indeed, the left-hand side being the proportion of agents with a high valuation given an aggregate shock ha ,
the idiosyncratic shocks defined by (1.39) and (1.40), and a suitable SLLN, whereas the right-hand side is the
proportion of agents with a high valuation that was assumed in the first place.
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and

Ṗc,t
(∆)= dPc,t

dt

being the time derivative of the function in (1.41). I also denote by

V (w, iθ;m2, t )
∆= E

[∫ ∞

t
e−ρsU (ĉs) ds

∣∣∣∣µ2(t ) =µ2 (m2, t )

]
the value function of an investor having a liquid wealth of w , being of type i and holding θ

units of the illiquid asset when a proportion µ2(t ) of the investors have a high valuation for the

illiquid asset. I assume that the value function is differentiable in the time since the last shock,

which is consistent with the assumption on the price process Pc .

My analysis of the dynamic setting is similar to the static analysis and is based on dynamic

programming. I first derive the HJB equations for the dynamic problem. Then, I assume that

the value function satisfies

V (w, iθ;ha , t ) =−exp
{−rγ (w +a (iθ;ha , t )+ ā)

}
, (1.43)

with the constant

ā
∆= 1

rγ

(ρ
r
−1+ log(r )+γme

)
.

This assumption is motivated by the static equilibrium analysis and justified ex post. Plugging

the guess (1.43) into the HJB equation yields

r a (iθ;m2, t )

= sup
π̃

ȧ (iθ;m2, t )+κ (iθ;m2, t ; π̃)

+λi ī
e−rγ(a(īθ;m2,t)−a(iθ;m2,t )) −1

−rγ

+2Λµ
(
ī θ̄;m2, t

)[e−rγ
(
a(iθ;m2,t )−Pd (m2,t )

(
θ̄−θ)−a(iθ;m2,t )

)
−1

−rγ

]+

+λa Em(m̃2)

 δ(i ;m2, t ;m̃2) e−rγ(a(īθ;m̃2,0)+π̃(Pc (m̃2,0)−Pc (m2,t))−a(iθ;m2,t))−1
−rγ

+ (1−δ(i ;m2, t ;m̃2)) e−rγ(a(iθ;m̃2,0)+π̃(Pc (m̃2,0)−Pc (m2,t))−a(iθ;m2,t))−1
−rγ



, (1.44)

with

κ (iθ;m2, t ; π̃)
∆=θmd + π̃(

Ṗc (m2, t )+mc − r Pc,(m2, t )
)

− 1

2
rγ

(
1 θ π̃

)
Σi

(
1 θ π̃

)∗ (1.45)
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representing the flow of mean-variance benefits resulting from holdings a certain portfolio,

conditional on no illiquidity shock occurring.

The prices on the OTC market are still defined by the Nash bargaining solution. Adapting

Proposition 4 from the static setting yields the price Pd (m2, t ) bargained on the OTC market

as the unique solution to the equation

η0
(
1−e−rγ(a(20;m2,t )−(a(2Θ;m2,t )−Pd (m2,t ))))
= ηΘ

(
1−e−rγ(a(1Θ;m2,t )−(a(10;m2,t )+Pd (m2,t )))) .

(1.46)

The optimal policy and the resulting value function of the investors are characterized by the

HJB equation (1.44). The impact of the illiquidity risk can be intuitively understood from

this equation. The last line on the right-hand side represents the aggregate shocks. The

random variable m̃2 represents the proportion of agents with a high valuation after the shock,

conditional on the occurrence of a liquidity shock.

In particular, this last line represents the utility shock expected by an investor when an aggre-

gate shock occurs. The investor evaluates both the possibility that he may be directly affected

by the shock, because her valuation may change, and the possibility of being affected by a

change in the state of the economy. This change to the economy comes both from a price

jump on the liquid market and from a change in the counter-parties on the OTC market.

When an investor chooses her holdings, she will take into account the mean-variance proper-

ties of the liquid asset and the covariance of this asset with her endowment. With aggregate

shocks, however, she will also consider how the liquid asset hedges her own preference shocks

and the shocks to her trading opportunity on the OTC market. The new dimension of the

individual portfolio problem is the channel by which the illiquidity of the search market spills

over and affects prices on the liquid market.

The HJB equation (1.44) characterizes the value function, but this characterization involves

both partial derivatives and integrals of the value function. The general treatment of such an

equation seems challenging. Instead, I focus on a certain asymptotic case.

More specifically, I let the agents become nearly risk-neutral with respect to the jump risks. In

mathematical terms, this is done by letting the risk aversion go to zero,

γ→ 0, (1.47)

and by scaling up the diffusion coefficients,

ai = ai
(
γ
) = ai 0p

γ

bi = bi
(
γ
) = bi 0p

γ

, (1.48)
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for constant numbers {ai 0,bi 0}i and an index i ∈ {1,2,c,d}. By doing so, the subjective quantity

of risk

γΣi
(
γ
)= γ0Σi 0 , i = 1,2

contained in the endowments and payout remains constant, even when investors become

risk-neutral with respect to the risks driven by Poisson processes. These Poisson processes

drive the random matching on the OTC market and the preference shocks.

The same approach is used to obtain closed-form expressions in Biais [1993], Duffie et al.

[2007], or Vayanos and Weill [2008]. The procedure is particularly transparent in Gârleanu

[2009]. This approach is also related to Skiadas [2013] and Hugonnier, Pelgrin, and Saint-

Amour [2013]. In these models, there are several sources of risk and agents have a different

level of risk-aversion for each risk. In my case, investors are risk-averse with respect to certain

risks (diffusion risks) and risk-neutral with respect to other risks (jump risks).

Focusing on this asymptotic setting makes the analysis of aggregate demand shocks tractable.

Proposition 14. There exists exactly one asymptotic equilibrium. In this equilibrium, the

2-investors buy the illiquid asset at all times if

det
((

ed ec

))
·det

((
e1 −e2 ec

))
> 0. (1.49)

Furthermore, the difference of valuations for the illiquid asset

(a(2Θ;m2, t )−a(20;m2, t ))− (a(1Θ;m2, t )−a(10;m2, t ))

is increasing in the quantity in (1.49) and decreasing in the contact rateΛ.

Proof. See Proof 50 in the Appendix.

The proof of Proposition 14 relies both on algebraic manipulations of the equilibrium equa-

tions and, in a second step, on an application of Blackwell’s sufficient condition for a contrac-

tion.

Proposition 14 indicates that the qualitative behavior of the dynamic equilibrium is similar to

the behavior in the static setting. Specifically, the inequality (1.49) is the same as the inequality

(1.33) defining the trading pattern in the static setting. Furthermore, the bargained price

Pd (m2, t ) = v(2;m2, t )−η2l (v(2;m2, t )− v(1;m2, t ))

is the reservation value of a potential buyer subtracted by a share of the trade surplus. The
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share of the surplus is given by the bargaining power of the buyer. The trade surplus is, as

stated in the last proposition, increasing in the risk-sharing made possible by the illiquid asset

and decreasing in the contact rate on the OTC market. The contact rate reduces the trade

surplus because it makes the search for a counter-party faster, improves the outside option

of the investors, and reduces the benefits that one particular trade can bring. More generally,

both Proposition 14 and its proof indicate that the intuition developed with the static model is

robust to the introduction of aggregate liquidity shocks.

The aggregate demand shocks, however, create new effects in the model. More specifically, in

the dynamic setting, the illiquidity of the OTC market affects prices on the liquid market. This

spillover effect and, more generally, the returns on the liquid market are the object of the next

proposition.

Proposition 15. I assume that the inequality (1.49) holds, meaning that 2-investors buy the

illiquid asset. Then, equilibrium expected excess returns on the liquid asset are

1

dt

(
E[ Pc (m2, t + dt )| (m2, t )]

Pc (m2, t )
− r

)
= md

r
+o

(
γ
)

+ rγ


1

Pc (m2,t )

(
ScΣcc +λa E

[(
Pc,0 −Pc,t

)2
∣∣∣ (m2, t )

])
+ 1

Pc (m2,t )

(
SdΣcd +Σηc

)
+λa EM(m̃2)

[(
Pc (m̃2,0)
Pc (m2,t ) −1

)
(W (m̃2,0)−W (m2, t ))

∣∣∣ (m2, t )
]

 ,

(1.50)

with

W (m2, t )
∆= Eµ(iθ;m2,t ) [a(iθ;m2, t )]

being the average certainty equivalent across the population of investors. If the illiquidity 1/Λ is

small enough, these expected returns increase in the illiquidity 1/Λwhen

ec · (e1 −e2) > 0 (1.51)

and decrease otherwise.

Proof. See Proof 51

Proposition 15 offers a clean decomposition of the excess returns on the liquid asset into three

different risk premia. The first two premia are classical. The first compensates investors for

taking exposure to uncertain price movement and the dividend risk of the liquid asset. The

second corrects the first by taking into account the diversification benefits against endowment
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risk and the dividend risk of the illiquid asset. The third premium is new and is driven by the

illiquidity risk. It compensates investors for holding an asset that performs poorly exactly when

trading on the OTC market becomes more difficult. To understand the underlying mechanism,

let us first consider the average certainty equivalent W (m2, t). Intuitively, we can use the

average certainty equivalent W (m2, t ) to measure the efficiency of the allocation on the OTC

market. Indeed, whenever the illiquid asset is transferred from a low valuation agent to a high

valuation agent, there is a net gain in utility across the population, and W (m2, t) precisely

reflects this utility gain.45 As a result, W (m2, t ) is a measure of the efficiency of the OTC market

or, equivalently, of the reallocation speed on the OTC market.

Whenever there is a negative aggregate shock, meaning that the proportion of high-valuation

investors drops, the imbalance on the OTC market is reduced, the search friction becomes

more acute, and the OTC market becomes slower when it comes to reallocating the illiquid

asset. When the inequality (1.51) holds, the negative aggregate shock induces a drop in the

price of the liquid asset. As this price drop occurs precisely when trading OTC becomes more

difficult, it commands a positive risk premium. In addition, this risk-premium increases with

the intensity of the search friction.

Interestingly, this illiquidity spillover effect increases in the level of illiquidity 1/Λ but is driven

by illiquidity risk. This can be readily seen from (1.50), where the impact of illiquidity on the

expected returns stems from the “covariance”

Em(m̃2)
[(

Pc (m̃2,0)

Pc (m2, t )
−1

)
(W (m̃2,0)−W (m2, t ))

∣∣∣∣ (m2, t )

]
between the returns of the liquid asset and the efficiency of the economy. Furthermore, this

covariance is scaled by the risk-aversion γ. The role of illiquidity risk can also be directly seen

by comparing Proposition 15 with the static equilibrium described in Proposition 10. Indeed,

in the static version of the model, there is no illiquidity risk and the frictions of the OTC market

have no impact on the price of the liquid asset.

Conceptually, the spillover effect of Proposition 15 is similar to results in Acharya and Pedersen

[2005]. Proposition 15, however, is based on an explicit modeling of illiquidity as a search

friction and makes predictions regarding the sign of the illiquidity spillover effect. The model in

Acharya and Pedersen [2005] relies on exogenous and stochastic transaction costs, and is thus

more suited for illiquid but centralized markets. Furthermore, the price effect of illiquidity risk

is driven by the exogenously specified covariance matrix of the transaction costs. Proposition

15 may thus be seen as a micro-foundation for the results in Acharya and Pedersen [2005].

My results also show that, unexpectedly, the measure of the illiquidity risk is determined by

investors’ certainty equivalent. It is interesting to compare Proposition 15 and the literature

45The proof of Proposition 15 contains a formal argument behind this statement.
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on long run risks, pioneered by Bansal and Yaron [2004]. In this literature, the assumption

of recursive (non time separable) preferences implies that the risk premia are determined by

investors’ certainty equivalent. This channel implies that, in stark contrast to the case of time

separable preferences, long run risk is priced in today’s returns. In my model, Proposition

15 shows that, in illiquid markets, long run risk is priced despite the fact that agents have

standard, time separable preferences. This interaction between long run risk and illiquidity is

an interesting and important topic for future research.

Proposition 15 can also be used to evaluate and improve empirical analysis of illiquidity.

Indeed, following the example of Longstaff et al. [2005], a number of authors willing to measure

the illiquidity component of bond yields have considered the so-called CDS basis, defined as

the spread between bond excess returns and CDS premia. The rationale for this procedure is

the relatively high liquidity of CDS markets when compared to bond markets. In particular,

CDS spreads should be a clean measure of credit risk.46 As Proposition 15 indicates, however,

even the returns on a perfectly liquid market may be affected by the illiquidity of a related

market.

Finally, Propostion 15 is consistent with empirical findings regarding illiquidity spillover. For

example, Tang and Yan [2006] and Lesplingart, Majois, and Petitjean [2012] document how the

illiquidity of the bond market increases yields on CDS contracts, which is exactly in line with

Proposition 15. Das and Hanouna [2009] documents a similar effect between stock and CDS

markets.

1.7 Opening the Liquid Market

In this section, I consider the effect of the liquid market on the functioning of the illiquid one.

For tractability reasons, I again focus on the stationary setting of Section 1.5.

As Proposition 10 and Proposition 14 show, the trading pattern on the OTC market is deter-

mined by the quantity

det
((

ed ec

))
·det

((
e1 −e2 ec

))
.

This quantity measures how much risk-sharing can be achieved on the OTC market only and,

as a result, is closely linked to the competitive price of the asset traded OTC. At the same time,

the Nash bargaining solution assumed for the OTC market also makes this quantity a measure

of the illiquidity discount.47 In particular, if the liquid asset mitigates the search friction and

46Illiquidity is also priced on CDS market, as shown by Bongaerts et al. [2011] and Junge and Trolle [2013]. It is,
however, true that CDS markets are typically significantly more liquid then their underlying bond markets.

47See Appendix A for explicit derivations supporting these claims.
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decreases the illiquidity discount on the asset traded OTC, the liquid asset will necessarily also

decrease the competitive price of the asset. This mitigation effect occurs because the liquid

asset offers an attractive alternative to the asset traded OTC. However, this alternative market

also diverts some of the fundamental demand for the asset traded OTC, leading to a capture

effect. The mitigation effect tends to increase prices on the OTC market whereas the capture

effect tends to decrease them. In this section I evaluate which of these effects dominates. I do

so by comparing the economy with and without the liquid market.

In the real world, the decision to create a market for a new security is always endogenous and

is determined by the financial intermediaries’ estimates of the investors’ trading needs. These

intermediaries can be dealers, who will make the market in the new security, or the exchanges

on which the security will be traded.48 The revenues of these intermediaries are driven by

trading volumes, and so is financial innovation. As a result, I assume that the liquid asset is

designed to maximize volumes.49

I derive the trading volumes for the proof of Proposition 12 (see Appendix D). Shares of the

liquid asset are exchanged at the rate

V = 1

Σcc

(
|Σcd |Θ2Λµ(1Θ)µ(20)+|Σ1c −Σ2c | λ12λ21

λ12 +λ21

)
(1.52)

when the 2-investors buy the illiquid asset.50 Recalling the definition of the covariation

matrices in (1.14) and defining the constants(
w1

w2

)
∆=Θ2Λµ(1Θ)µ(20)

(
ad

bd

)
(

w3

w4

)
∆= λ12λ21

λ12 +λ21

(
a1 −a2

b1 −b2

)
,

48Regarding a description of financial innovation being driven by intermediaries rather than by end-users, one
may refer to Das et al. [2013]:

CDS introduction is initiated by dealer banks depending on factors such as size of outstanding debt
of an issuer, underlying credit risk of the issuer, and demand for credit protection. [. . . ] Introduction
of an equity option is decided by the corresponding options exchange depending upon factors such
as trading volume, market capitalization and turnover of the underlying stock.

Duffie and Jackson [1989] proposes a model of financial innovations by intermediaries who maximizes trading
volumes. Rahi and Zigrand [2009] and Rahi and Zigrand [2010], for instance, propose alternative theoretical models
of financial innovation driven by intermediaries.

49I do not model the intermediary explicitly. However, an intermediary who earns a constant bid-ask spread on
transactions will attempt to maximize trading volumes. And the trading volume with a constant bid-ask spread
converges toward the volume without transaction costs when the bid-ask spread decreases. See Praz [2013] for a
treatment of transaction costs in a setting similar to the one of this paper.

50The expression (1.52) also describes the asymptotic trading volume in a setting with aggregate demand shocks
when the risk-aversion γ goes to zero. See the characterization of the asymptotic optimal liquid holdings in the
proof of Proposition 14.
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I rewrite Equation (1.52) as

ΣccV = |w1ac +w2bc |+ |w3ac +w4bc | .

When 1-investors buy the illiquid asset, the only change is that the weights w1 and w2 must be

rescaled.51

It is important to understand which model parameters influence the equilibrium trading

volume. First, the trading volume V is independent of the expected payout of the liquid asset,

as seen in Equation (1.52). This expected payout must thus be set exogenously. Second, the

number of shares exchanged can be made arbitrarily large by scaling down the risk exposures

ec of the liquid asset.52 Without loss of generality, I normalize the overall exposure

Σcc
(= ‖ec‖2

2 = a2
c +b2

c

)
to 1.

Summing up, I choose the liquid asset that maximizes the trading volume, meaning that I

choose the risk-profile ec of the liquid asset to be a point of maximum in the optimization

max
(ac ,bc )

{|w1ac +w2bc |+ |w3ac +w4bc |} (1.53)

under the conditions

‖(ac ,bc )‖2 = 1,

det

((
ad ac

bd bc

))
·det

((
a1 −a2 αc

b1 −b2 βc

))
> 0. (1.54)

Three features of the maximization (1.53) should be emphasized. First, the constraint (1.54)

ensures the consistency of the beliefs regarding the trading pattern on the OTC market. Specif-

ically, as the objective function (1.53) assumes that 2-investors buy the asset traded OTC, the

inequality (1.54) ensures that this assumption is justified ex post.

Second, the inequality (1.54) is strict. The borderline with equality corresponds to the case

in which all investors have the same reservation value for the illiquid asset. In this case, the

51The rescaling factor is

µ(2Θ)µ(10)

µ(1Θ)µ(20)

and is the ratio of the type flows generated by trading when 1-investors buy the illiquid asset and when 2-investors
do.

52Dividing ec by K > 0 multiplies the trading Volume by K .
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benefits resulting from any trade on the OTC market are zero, investors are indifferent on the

OTC market, and I would need more assumptions to define the type dynamics and the trading

volumes.53

Third, both the objective function and the domain of optimization in (1.53) are symmetric

around the origin. As a result, whenever a point x one the unit circle is a point of maximum,

so is its opposite −x.

I can characterize the solution to the optimal asset design problem (1.53).

Proposition 16. There exists a solution to the volume maximization (1.53) exactly when((
w1

w2

)(
w1 −w3

w2 −w4

))
×

((
w3

w4

)(
w1 −w3

w2 −w4

))
< 0. (1.55)

In this case, the optimal liquid asset is(
ac

ad

)
=±1

ν

(
w1 −w3

w2 −w4

)
, (1.56)

with the constant

ν
∆=

√
(w1 −w3)2 + (w2 −w4)2

ensuring the normalization Σcc = 1.

Proof. See Proof 48 in the Appendix.

Proposition 16 implies that the optimal liquid asset is the weighted average of two risk profiles.

The first is the profile of the illiquid asset and the second is optimal in terms of risk-sharing.

This already indicates how the new liquid asset balances the attempt to capture some of the

trading activity that takes place OTC and the alternative aim of being valuable to as many

investors as possible. Furthermore, the weight on the profile of the illiquid asset is monotone

increasing in the contact rate on the OTC market because, with a higher contact rate, there is

more volume to capture. Perhaps paradoxically, this means that the search friction is easier to

mitigate when it is smaller in the first place.

Importantly, the optimal security design defined by the maximization (1.56) does not necessar-

ily have a solution. In particular, if inequality (1.55) does not hold and the liquid asset has the

risk-profile in Equation (1.56), then 1-investors have the higher valuation for the illiquid asset.

Conversely, if the trading volumes had been optimized under the assumption that 1-investor

53The additional assumptions would require to randomize the decision to trade.
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buy the illiquid asset, the resulting liquid asset would actually induced the 2-investors to buy

the illiquid asset. As a result, the only way of, possibly, obtaining an optimum would be to

impose the behavior of the investors on the OTC market when investors are indifferent.

Finally if the trading pattern on the OTC market is the same before and after the opening

of the liquid market, the type flows across the population will not change when the liquid

asset is introduced. As a result, the trading volumes will be constant at any time. However, if

the opening of the liquid market inverts the trading pattern on the OTC market, the trading

volume (1.52) only represents the asymptotic trading volume in the steady state.54

Intuitively, choosing a liquid asset that is very similar to the illiquid asset has two consequences.

On the one hand, the liquid asset mitigates the search frictions and reduces the illiquidity

discount on the OTC market. This pushes the price on the OTC market up. On the other hand,

if the liquid asset is very similar to the illiquid asset, the illiquid asset has little value left as a

risk-sharing instrument. This second effect pushes the price of the illiquid asset down.

Figure 1.4 illustrates how each of these effects can dominate. When the search friction is

severe, on the right part of the plot, the mitigation of the illiquidity discount dominates the

drop in the fundamental value and the price on the OTC market increases when the liquid

asset starts trading. Quite differently, when the search frictions are modest, on the left part

of the plot, the illiquidity discount is small and diversion of trading volume towards the new

market dominates the benefits of the new hedging opportunities. To complete this section, I

note that, for potential applications to bond market, it may be more natural to consider the

yield on the illiquid asset. This is done in the second panel of Figure 1.4.

1.8 Conclusion

I study a general equilibrium model in which agents can trade both on an illiquid OTC market

and on a liquid, centralized market. Search frictions on the OTC market increase the trading

volume and open-interest on the liquid market. Furthermore, the endogenous interactions of

the search frictions with the aggregate demand shocks generate a time-varying efficiency of the

asset allocation on the OTC market. This liquidity risk is priced and affects the risk premium

on the liquid asset. These results are consistent with a number of empirical studies.55

Motivated by several real-world examples in which centralized markets were created as an

alternative to preexisting OTC markets, I introduce endogenous financial innovation into the

54See Theorem 5 (and its proof) in Duffie et al. [2005] for a similar issue. Namely, Duffie et al. [2005] show how,
for a sufficiently patient intermediary, an optimal policy chosen at time zero and fixed afterwards is approximately
the policy that maximizes revenues in the steady state.

55Regarding the interactions between CDS and bond markets see, for example, Oehmke and Zawadowski [2013],
Tang and Yan [2006], Lesplingart et al. [2012], or Das and Hanouna [2009].
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model. I assume that intermediaries design the cash flows of the liquid asset that maximize

the equilibrium trading volume. Then, I compare the prices on the OTC market in an economy

with and without a liquid asset. I show that the risk profile of the optimal liquid asset is a

weighted average of the illiquid asset’s profile and of the risk profile that would lead to an

efficient risk-sharing. The weight on the profile of the illiquid asset is shown to be monotone

increasing in the contact rate on the OTC market because, with a more active OTC market,

there is more trading volume to capture.

I show that the liquid market has two effects on the illiquid OTC market. On the one hand, it

mitigates the search frictions, reduces the price discount on the illiquid asset, and increases

the prices bargained on the OTC market. On the other hand, the liquid asset captures some

of the illiquid asset’s value as a risk-sharing instrument. I show how each of these effects can

dominate, and link this equilibrium behavior with the empirical literature studying how the

onset of CDS trading affects bond yields.

I believe that understanding the role of liquidity in portfolio selection and its general equi-

librium feedback effects is both important and timely. Several regulatory reforms such as

the Dodd-Frank Act in the US and the MiFID II proposal in the European Union propose to

significantly revise the functioning of modern markets and, in particular, to move some of the

OTC trading to centralized exchanges. The only way to evaluate the consequences of these

reforms is to develop a general equilibrium model that accounts for the trading frictions on

OTC markets and their cross-market externalities.

My model could be enriched in several directions. For example, throughout this paper, I

assumed a dichotomy between an illiquid OTC market and a perfectly liquid market. In many

real-world examples, however, the alternative to a costly search process will be to trade on

another market immediately, but at a cost. In Praz [2013] I introduce this additional liquidity

friction, and consider a general equilibrium model in which investors balance transaction costs

and execution uncertainty when they select their portfolio holdings. Financial intermediaries

rationally anticipate this behavior and optimally choose the bid-ask spreads on the exchange,

the level of liquidity provision on the OTC market, and the form of financial innovation.

Finally, introducing asymmetric information, either in terms of common value uncertainty,

as in Duffie, Malamud, and Manso [2009], or in terms of private liquidity needs would also

significantly enrich the structure of the model. A model of OTC market with asymmetric

information would shed light on the current regulatory debates aiming at increasing the

transparency of OTC markets. We take some first steps in this direction in Cujean and Praz

[2013].

1.9 Figures
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bond valuation

t

low

high

bond holdings

CDS
t

Figure 1.1: The first panel represents the subjective valuation of an asset traded OTC, say
a bond, by a given investor and how this valuation changes over time. The second panel
represents this investor’s holdings in the illiquid asset (solid line) and a more liquid security
offering a similar exposure (dashed line). If the illiquid asset is a bond, the liquid security
could be a CDS (as a protection seller). The shaded areas corresponds to the periods during
which the investor is searching for a counter-party on the OTC market. During these periods,
the investor hedges her sub-optimal exposure to the illiquid asset by trading the liquid asset.
These plots are illustrative and not based on the parameters in Table 1.1.
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1.9. Figures

ec

ed

e1-e2
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Figure 1.2: This plot represents the vector of exposures of the liquid asset (ec ) and of the illiquid
asset (ed ), along with the differences of the exposures between the two types of investors
(e1 − e2). The horizontal axis measures the exposure to the aggregate risk a and the vertical
axis measures the exposure to the aggregate risk b. The surface of the quadrangle with the
narrow dash is |det(ed : ec )| and measures how orthogonal the exposures of the two assets
are. The surface of the quadrangle with the broad dash is |det(e1 −e2 : ec )| and measures how
orthogonal the risk profile of the liquid asset is to the profile that would be optimal in terms of
risk-sharing. The two quadrangles intersect when det(ed : ec )det(e1 −e2 : ec ) > 0, which is the
condition appearing in Proposition 10 and defining the trading pattern on the OTC market.
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Table 1.1: Baseline parameter values.

notation parameter value
Sc supply of the liquid asset 0
Sd supply of the asset traded OTC 0.8

ηΘ, η0 bargaining powers 1
2

λ21 arrival rate of idiosyncratic liquidity shocks 1
5

λ12 recovery rate from a liquidity shocks 5
Λ meeting rate 50

r risk-free rate 0.037
mc expected payouts of the liquid asset 0.05
md expected payouts of the asset traded OTC 0.05

(ac ,bc ) exposures of the liquid asset (1.0000,−0.0016)
(ad ,bd ) exposures of the asset traded OTC (0.1022,−0.0002)
(a1,b1) exposures of the endowment for the investors of type 1 (9.4718,−0.0150)
(a2,b2) exposures of the endowment for the investors of type 2 (−0.5017,0.0008)

γ coefficient of absolute risk aversion 2
Θ holdings in the asset traded OTC 1

Choice of the parameters The supply of the illiquid asset, the holdings size Θ, and the
dynamics of the idiosyncratic shocks are taken from Duffie et al. [2007]. The liquid asset
is understood to be a derivative and its net supply is zero. The risk-free rate and expected
payouts of the assets are the same as in Gârleanu [2009] (the calibration in Gârleanu [2009] is
itself based on Campbell and Kyle [1993] and Lo et al. [2004]). The baseline meeting intensity
is within the standard range and corresponds an average of one meeting per week. The risk-
aversion is chosen within the standard range. The exposures of the assets and endowments
are chosen to satisfy the following conditions.

1. The profile of the illiquid asset maximizes the reservation value of the illiquid asset in a
setting without liquid asset, conditionally on the exposures of the endowments. This
maximization captures, in a reduced form, the strong clientèle effects on OTC markets.

2. The two risky assets should have an expected return of approximately 5%.

3. The 2-investors buy the illiquid asset both before and after the opening of the liquid
market. See the discussion after Proposition 16.

4. The two risky assets should have the same price for the baseline parameter values. This
is for ease of visualization only.

The values of the asset and endowment exposures are then found numerically.
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1.9. Figures
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Figure 1.3: Each vertex is a type of investors (for a type iθ, i ∈ {1,2} is the type of exposure and
θ ∈ {0,Θ} are the holdings in the illiquid asset). Each arrow indicates a flow between types and
the number on each arrow is the corresponding transition intensity for a given investor. These
flow are valid under Assumption 6 and corresponds to the flow equations (1.25).
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Chapter 1. Equilibrium Asset Pricing with both Liquid and Illiquid Markets
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Figure 1.4: The upper panel is a plot of the price bargained on the OTC market as a function
of the meeting intensity on the OTC market. The continuous line is the price when the OTC
market is the only market in the economy, whereas the dashed line is the price when investors
can trade both on the liquid and on the OTC market. The lower panel plots the expected
returns on the illiquid assets, but is otherwise similar to the upper one. The parameter values
for this plot are in Table 1.1.
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2 Pay or Wait: Equilibrium Prices with
Two Trading Frictions

I1 study an equilibrium model in which investors hedge endowment risk on two markets. The

first market is centralized and trades can be executed at any time but against proportional

transaction costs. The second market is over-the-counter (OTC) and requires to search for

a counter-party. I show the existence of an equilibrium for any level of transaction costs

and characterize in closed-form how the two frictions jointly modify the risk-premia on

both markets. The transaction costs reduce both the transaction sizes and frequencies on

the centralized market, and affect the price on the OTC market by making hedging more

costly. The prices bargained OTC depend non-monotonically on the transaction costs on the

exchange. I link my results to recent regulatory proposals and show how taxing CDS trading

may both increase of decrease the cost of debt financing.

2.1 Introduction

Ongoing political discussions in the EU aim at taxing financial transactions.2 These taxes

would apply to most financial transactions, including credit default swap (CDS) trades, but

debt securities may be excluded.3 Confirming this pattern, the French transaction tax intro-

duced in 2012 affects CDS transactions but not debt transactions. The discussions regarding

financial transaction taxes thus appear to rely on the assumption that taxing CDS trading but

1I thank my advisor Semyon Malamud for his continuous guidance. I also thank Pierre Collin-Dufresne, Julien
Cujean, Nicolae Gârleanu, Julien Hugonnier, and Ramona Westermann for their comments and suggestions. I also
thank participants to the 6th Erasmus Liquidity Conference in Rotterdam.

2These proposals are clearly designed as punitive actions. A 2011 press release of the European Commission
was entitled “Financial Transaction Tax: Making the financial sector pay its fair share”. In the US, a bill proposed in
2009 is called “Let Wall Street Pay for the Restoration of Main Street”

3For instance, Bloomberg Businessweek (Rebecca Christie and Jeanna Smialek) [April 21, 2013] reports a
statement by Ferdinando Nelli Feroci, the Italian Permanent Representative to the European Union in Brussels at
the time. Talking about financial transaction tax, Mr. Nelli Feroci claimed that “Transactions on government bonds
must be excluded” and that this point is “not up to negotiation”.
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not bond trading will decrease the cost of debt financing.4

In an empirical study, Oehmke and Zawadowski [2013] show how investors use CDS and bond

markets as two alternative means of adjusting their exposure to the same fundamentals. Das

et al. [2013] also provides some evidence in this sense. What distinguishes the two markets

is liquidity. Indeed, even if both the CDS and bond markets are over-the-counter (OTC), the

search frictions on the CDS market are far less severe than the frictions on the bond market.5

The difference in search frictions reflects the difference in market fragmentation, with the

CDS market being a uniform, “one size fits all” alternative to the the many bonds, with many

maturities, embedded options, and covenants, available for each issuer.

Evaluating the effect of taxing CDS transactions on bond yields thus requires to understand

the portfolio decisions of investors facing two types of illiquidity. These two types are, on the

one hand, an explicit cost paid to execute a transaction immediately and, on the other hand,

the costly uncertainty of having to search for a counter-party on an illiquid OTC market.

Analyzing the interaction between these two types of illiquidity is relevant beyond the discus-

sion of financial transaction taxes. Indeed, even in the absence of taxes, investors pay a bid-ask

spread to the CDS dealer for providing immediacy on the CDS market and, by doing so, make

it possible to bypass the frictions of the bond market. Further examples of a trade-off between

immediacy and uncertainty abound. One may think of an investor trading collateralized debt

obligations instead of loans, or a property total return swap instead of real estate assets. Fur-

ther example comparing immediacy and uncertainty include the “upstairs” and “floor” stock

markets, or the comparison of limit and market orders in limit order books. Finally, investors

face a similar trade-off when they balance the costly convenience of bespoke derivative and

structured products against the basis and operational risks of a dynamic replication strategy.

The problem of an investors balancing the costs of immediacy against execution uncertainty

is complex. The investor must consider the explicit transaction costs, the implicit search costs,

and the basis risk between the two assets. The exact effect of the frictions on the individual

policies and how these effects aggregate can only be analyzed in a general equilibrium setting.

I propose such a setting in this paper.

I study an economy in which risk-averse investors share endowment risk by trading two

imperfectly correlated assets. The first one is traded on an exchange, with a constant bid-ask

spread, whereas the second is traded on on illiquid OTC market. I follow Duffie et al. [2007] for

the modeling of the OTC market. In this framework, investors meet randomly at a given rate

4See, for instance, The Financial Times (Tracy Alloway) [November 6, 2011] and The Financial Times (opinion
by Andrew Baker) [November 9, 2011] for reports of the popular criticisms against CDS trading and its impact on
bond markets

5See Longstaff et al. [2005] for a discussion of the relative liquidity of the CDS and bond market.
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and the Nash bargaining solution characterizes the bilateral trades. Liquidity, measured by

the meeting rate, affects investors both because contacting a potential trading partner is time

consuming and because prices are not competitive. The interaction between the two markets

is driven by the investors who use the exchange as a substitute for the OTC market and hedge

on the exchange while searching for a counter-party on the OTC market.

I show the existence of an equilibrium for any level of transaction costs and obtain closed-form

expressions for the equilibrium quantities. The existence argument is non standard because

the transaction costs introduce discontinuities in the equilibrium equations.

The search frictions on the OTC market affect the price of the asset on the exchange. As made

clear by Gârleanu [2009], the equilibrium effect of transaction costs depends on the imbalance

between the investors who last purchased and those who last sold the asset. When the meeting

rate on the OTC market varies, so does the rate at which investors hedge (by both buying and

selling) on the exchange, and whether the buying or selling pressures dominates depends on

the dynamics of the hedging demand. I show that, when low valuation spells are relatively

short, the search friction on the OTC market increase the risk premium on the exchange.

The transaction costs on the exchange have two main effects. First, they make the marginal

cost of trading on the exchange higher. Investors optimally react to these costs by reducing the

size of their transactions when they trade. Second, the transaction costs also make trading on

the exchange less frequent. Indeed, when an investors receives a shock to her hedging demand,

she balances the costs of trading on the exchange, the optimal risk-profile that she may achieve

by trading, and when this risk-profile will have to be adjusted again. When the transaction

costs are high enough, the round-trip transaction costs can dwarf the improvement to the

risk-exposure and investors optimally decide not to trade after certain idiosyncratic shocks.

As the transaction costs increase the costs of hedging, they also affect the outside options of

the agents bargaining on the OTC market. As I show with numerical examples, the relationship

between the transaction costs on the exchange and the price bargained on the OTC market is

non-monotonic. The intuition is as follows.

As long as the transaction costs are low enough, investors on both the long and the short side of

the market hedge on the exchange while searching for a counter-party on the OTC market. As

the investors on the short-side of the market find a counter-party more easily, these investors

trade at a higher frequency. As a result, any increase of the transaction costs is particularly

detrimental to the investors on the short-side of the market and makes their outside option

particularly weak.
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It is standard to assume that sellers are on the short side of the market.6,7 In this case, in-

creasing the transaction costs on the exchange makes the sellers relatively weaker when they

bargain, and the asset traded OTC is exchanged for a lower price.

If the transaction costs increase beyond a certain threshold, however, investors on the short

side of the market stop hedging while they are searching for a counter-party. As a result, any

further increase of the transaction costs mostly affects the investors on the long side of the

market and make their outside options weaker when thy bargain. As a result, when buyers

are on the long side of the OTC market and when the transaction costs are sufficiently large,

the price bargained OTC is increasing in the transaction costs on the exchange. As I show in

numerical examples, the price bargained with sufficiently high transaction costs can be higher

than when these costs are zero.

I finally come back to the impact of taxing CDS trading on bond yields. The equilibrium

behavior of my model indicates that making CDS trading costly may indeed decrease bond

yields. The equilibrium relationship between taxes and yields is, however, non-monotonic,

and depends in a rather subtle way on the strength of the trade motives, their dynamics, and

the relative levels of the two types of illiquidity. A financial transaction tax may thus decrease

debt financing, but the exact effect is hard to predict. Introducing a financial transaction tax

to decrease borrowing yields seems to be a hazardous strategy.

Literature Review My paper is related to four main strands of literature. First, I use the

framework introduced in Duffie et al. [2005] and Duffie et al. [2007] to model the OTC market.

A number of references rely on related settings. Examples include Weill [2007], Weill [2008],

Gârleanu [2009], Afonso and Lagos [2011], Lagos and Rocheteau [2007], Lagos and Rocheteau

[2009]. These references all analyze a unique illiquid market, whereas I look at the interactions

between two illiquid markets.

Second, my paper is related to the literature comparing market structures or market liquidity

levels. For instance, Biais [1993], De Frutos and Manzano [2002], Yin [2005] compare central-

ized and fragmented markets in a static setting. In Pagano [1989], Rust and Hall [2003], and

Miao [2006], investors can choose between a centralized and a search market, but investors

only trade once and, as a result, there is no cross-market hedging.

6This is, for instance, Condition 1 in Duffie et al. [2005], Inequality (6) in Weill [2007], and Assumption 2 in
Vayanos and Weill [2008]. When this assumption does not hold, search frictions increase the price of illiquid assets,
and effect that is only rarely observed on actual markets. An exception may be the on-the-run Treasuries, see the
discussion in Duffie et al. [2007].

7If buyers are on the short side of the market, the search frictions increase prices, a phenomenon that is rarely
observed on actual markets. An exception may be the on-the-run Treasuries. See the discussion in Duffie et al.
[2007].
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2.2. Model

My paper is also related to the literature in asset pricing that evaluates the equilibrium effects

of trading frictions. Examples focusing on transaction costs include Constantinides [1986], Lo

et al. [2004], Vayanos [1998], Huang [2003], and Garleanu and Pedersen [2013]. More recent

recent examples that draw links with current regulatory reforms include Buss and Dumas

[2013] and Buss, Dumas, Uppal, and Vilkov [2013]. Some other references consider markets

with different levels of search frictions. These references include Vayanos and Wang [2007]

and Vayanos and Weill [2008]. I study the interaction between transaction costs and search

frictions in a dynamic setting.

Finally, I analyze the interaction between costly trading immediacy and uncertainty regarding

the trade execution. This issue is related to the choice of market against limit order in limit

order book markets. Foucault, Kadan, and Kandel [2005], Parlour [1998], Goettler, Parlour, and

Rajan [2005], and Roşu [2009], for instance, analyze the dynamics of limit order books.

2.2 Model

The model in this section is essentially the same as in the first chapter of my dissertation,

except that trading on the exchange is costly and requires to pay proportional transaction

costs. For convenience, I recall the main elements of the model.

I study an economy in which investors share endowment risk by trading two different assets

on, respectively, a liquid exchange and an OTC market. This model is an extension of Duffie,

Gârleanu, and Pedersen [2007].

Assets and investors Two independent aggregate risk factors are described by the Brownian

motions(
Ba,t ,Bb,t

)
t≥0 .

Two risky assets, c and d , are exposed to these risk factors. The cumulative dividend payouts

of these assets satisfy

dDc,t = mc dt +ac dBa,t +bc dBb,t ,

dDd ,t = md dt +ad dBa,t +bd dBb,t .
(2.1)

These assets are available in net supplies Sc and Sd , respectively. As described below, the asset

c is traded on a centralized market, whereas the asset d is traded on a decentralized, OTC
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market. For convenience, I define the vectors

ec
∆=

(
ac

bc

)
, ed

∆=
(

ad

bd

)

and call them the exposures of the assets c and d , respectively.There is also a risk-free asset,

available in perfectly elastic supply, and paying out dividends at the constant rate r > 0.8

The economy is populated by a continuum of investors. I write µ for a normalized measure

over this continuum. Each investor receives an endowment driven both by the aggregate risk

factors and by idiosyncratic shocks. More specifically, the cumulative endowment of investor

i satisfies

dηt = mη dt +ai ,t dBa,t +bi ,t dBb,t , (2.2)

and is thus driven by the two aggregate risk factors. The vector of exposures

ei ,t
∆=

(
ai ,t

bi ,t

)
(2.3)

evolves stochastically. Specifically, the stochastic vector ei ,t is a time-homogeneous Markov

chain jumping back and forth between two (two-dimensional) values.9 These two values are

e1
∆=

(
a1

b1

)
and e2

∆=
(

a2

b2

) (∈R2)
and I denote by(

−λ12 λ12

λ21 −λ21

)
(2.4)

the generator of the Markov chain. The Markov chains are independent across agents.

Trading mechanisms Investors trade the liquid asset c on a centralized market and any

trade requires the payment of proportional transaction costs. The exact impact of these costs

is discussed below. Investors also trade the risk-free asset at any time and without costs.

The other risky asset, d , is traded OTC. Trading d thus requires searching for a counter-party

and negotiating the details of the transaction. The search process is governed by a “random

8The interest rate is exogenous in all the models of asset pricing with search that I am aware of.
9In particular, both components of the vector of exposures jump together.

50



2.2. Model

matching". That is, a given investor gets in touch with another investor at the jump times of

an idiosyncratic Poisson process with intensityΛ. This other investor is randomly drawn from

across the population of investors. The draws are independent across meetings.

As the meeting intensityΛ controls the search friction on the OTC market, I call it the liquidity

of the OTC market. Given the dynamics of a Poisson process, the inverse

ξ
∆= 1

Λ

of the liquidity is the expected search time until the next meeting. I call this expected time the

illiquidity of the OTC market.

Taking things together, investors from two separate subsets B and C of the population meet at

the rate

2Λµ(B)µ(C ), (2.5)

with µ being a measure on the set of investors.

Once two agents have met, they bargain over a possible trade in the illiquid asset d , and the

outcome of the bargaining is given by the Nash bargaining solution.

Preferences Each investor i maximizes her expected utility from consumption. Her utility

function U has a constant coefficient of absolute risk aversion γ > 0 (exponential or CARA

utility), meaning that

U : c 7→ −e−γx ,

and their subjective rate of discounting is ρ > 0. The consumption and investment policy of i

is thus dictated by the optimization

sup
c̃

E

[∫ ∞

0
e−ρuU (c̃u) du

∣∣∣∣Fi ,0

]
, (2.6)

with the admissible consumption processes c̃ satisfying certain conditions defined below and

Fi ,0 being all the information available and relevant to i at time 0.

The payouts of the risky assets, defined in (2.1), are independent and identically distributed

across time. Furthermore, the idiosyncratic exposure shocks defined by (2.4) offer a unique

and stable stationary distribution of types 1 and 2 across the population. As a result, I expect

all the aggregate quantities to be constant in the long run and I focus my analysis on this
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asymptotic, stationary case.10 In a stationary equilibrium, the information set Fi ,0 only

contains idiosyncratic quantities and the individual problem (2.6) becomes

V (w, t )
∆= sup

c̃
E

[∫ ∞

0
e−ρuU (c̃u) du

∣∣∣∣∣ w0 = w

t0 = t

]
, (2.7)

with w0 being the wealth invested by i at time zero in the risk-free asset and t0 being i ’s type

at time zero. The exact definition of the type in the setting with transaction costs is discussed

below.

Budget constraint The consumption and trading of an investor must be consistent with the

dynamics of her wealth. Specifically,

dw̃t = r w̃t dt − c̃t dt + dηt + θ̃t dDd t −Pd dθ̃t + π̃t dDct −
(
Pc +q sgn( dπ̃t )

)
dπ̃t , (2.8)

with π̃t being the number of shares of the liquid asset c held at time t , Pc being the price of

the liquid asset c and Pd being the price of the illiquid asset d .

Again, for ease of exposition, I restrict the model parameters as follows.

Assumption 17. The dynamic of the exposure shocks, as described by (2.4), and the supply

Sd of the illiquid asset d satisfy

λ12

λ12 +λ21
6= Sd 6= λ21

λ12 +λ21
.

Also, the vectors ed , ec , and e1 −e2 are not collinear.

Assumption (17) prevents the lengthy treatment of non-generic cases.11

2.3 Transaction Costs

I investigate how transaction costs on the exchange impact the OTC market.

Three motivations for this extension. First, in the first chapter of this dissertation, I understood

a market as being illiquid when an investor cannot immediately trade on it. I then studied

the interaction of such an illiquid market with a frictionless market to which investors have a

10The cross-sectional distribution of wealth is not necessarily constant over time. However, the equilibrium
policies are independent of the wealth, thanks to the CARA preferences, and this non-stationarity has no impact
on the equilibrium portfolios and prices.

11I endogenize the risk-profile ec in the first chapter of this dissertation. The assumption regarding the
non-collinearity of the vectors of exposures will hold in this case if ed and e1 −e2 are not collinear
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constant access. For convenience, I thus ignored that trading may very well be executed with

barely any delay but at a cost.

Second, on actual markets, there is usually a mix between trading delays and costs of trading.

For example, both illiquid bonds and CDS’s are traded OTC, usually via dealers. The interme-

diation of trading by dealers means that trading will involve both delays, because of the time

taken to contact the dealer and discuss the details of the transactions, and transaction costs in

the form of the fee collected by the dealer. For a trade in the illiquid bond, the intermediary

may act as a broker and search for an end-user willing to take the other side of the trade and

the main trading friction will presumably be the delay. Quite differently, for a liquid CDS,

the dealer is likely to propose a trade immediately and the main friction is likely to be the

intermediation fee. In this section, I attempt to capture these two aspects of illiquidity.

Third, Political attempts to tax financial transactions. See French example of a financial

transaction tax that applies to CDS trades but not to transactions in debt securities. Appear

that relies on assumption that CDS trading makes debt financing more costly.

In this section, I thus explore the interaction between illiquid OTC markets and markets that

are liquid, in the sense that a position can be liquidated at any time, but on which trading is

costly. My modeling of the transaction costs and the subsequent analysis are based on the

section 4 of Gârleanu [2009].

I assume proportional transaction costs for the asset c. Namely, investors can purchase the

liquid asset c at the price

Pc +q,

and sell this same asset at

Pc −q.

These two prices are taken as given. The constant q > 0 measures the bid-ask spread and is

exogenous. The mid-price Pc is an equilibrium quantity.

In the static version of the model, an investor only trades on the exchange after being hit by

an exposure shock or after trading on the OTC market. This optimal trading activity results

from the combination of the CARA preferences with the absence of state variable induces.

In particular, the trading on the exchange in the baseline model is fully characterized by the

holdings adopted after each of the six possible type shocks. I assume the same type of trading

activity in the setting with transaction costs.

Assumption 18. In equilibrium, an investor only trades on the exchange after a change of her

type. I denote the portfolios adopted after each possible shock by
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shock portfolio adopted

1l → 2l π(2l )

2l → 1l π (1l2l )

2l → 2h π (2h2l )

2h → 1h π(1h)

1h → 2h π (2h1h)

1h → 1l π (1l1h)

and writeΠ for the vector containing all six portfolios.

A few comments are in order. First, the type 1l can be reached from the type 2l by an exposure

shock and from the type 1h by an OTC trade. In the baseline setting, the current type fully

determines the holdings in the liquid asset. In the setting with transaction costs, both the

fundamental exposure and the trade direction will determine the optimal holdings in the liquid

asset. Hence, the optimal portfolio may depend on both the current and last type, something

that Assumption 18 allows for. Second, some components ofΠmay be equal. This happens

when the transaction costs are sufficiently large to dominates a potential improvement of the

risk-profile. As is intuitively clear, for an arbitrarily large q an investor optimally decide to

never trades on the liquid market can be optimal. This corresponds to a vector of holdings in

Assumption 18 whose components are all equal. Third, assuming that Assumption 18 does not

hold largely amounts to assuming that investors react to the the introduction of the transaction

cost by trading more frequently. I do not think that such an assumption can be justified in

equilibrium.

An equilibrium with transaction costs is entirely similar to an equilibrium in the baseline

model. The only difference is the characterization of the optimal liquid holdings. Given the

equilibrium holdings Π and mid-price Pc for the liquid asset and taking as given a trading

pattern on the OTC market, the value functions of the agents are still be characterized as the

solution to a system of HJB equations. Namely, I assume that the only transaction on the OTC

market are the sales of the illiquid asset by 1h-investors to 2l-investors. This means that the

only type changes induced by meetings on the OTC markets are of the form

(1h,2l ) 7→ (1l ,2h)

and, as a result, occur at the rateΛµ(1h)µ(2l ).12 Given the trading on the OTC market, I can

12In the baseline setting, this trading pattern occurs is the unique equilibrium outcome exactly when

det

((
ad ac
bd bc

))
det

((
α1 −α2 ac
β1 −β2 bc

))
> 0,

as shown in the first chapter of this dissertation. This is still the case for sufficiently small transaction costs q , as
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write the HJB equations. I then assume the form

V (w, iθ,π) =−e−rγ(w+a(iθ,π)+ā)

for the value functions and follow the same steps as in the first chapter. Again choosing

ā
(∆)= 1

rγ

(
−1+ ρ

r
+γme + log(r )

)
and recalling the definition

κ(iθ,π)
(∆)= θmd +πmc − rγ

2

(
1 θ π

)
Σi

1

θ

π

 (2.9)

for the flow of mean-variance benefits, these steps yields the characterization

r a (1l1h) = κ (1l ,π (1l1h))+O (γ)

+λ12

 a (2l )

− (π(2l )−π (1l1h))
(
Pc −q +2q1{π(2l ))>π(1l1h )}

)
−a (1l1h)


r a (1l2l ) = κ (1l , (1l2l ))+O (γ)

+λ12

 a (2l )

(π(2l )−π (1l2l ))
(
Pc −q +2q1{π(2l ))>π(1l2l )}

)
−a (1l2l )


r a (1h) = κ (1h,π(1h))+O (γ)

+λ12

 a (2h1h)

− (π (2h1h)−π(1h))
(
Pc −q +2q1{π(2h1h )>π(1h)}

)
−a (1h)


shown in Appendix B. For general values of q , I must check the consistency numerically. Note that the proof for
small transaction costs in the appendix is not immediate because in the setting with transaction costs 4 trades may,
a priori, generate a surplus. These trades are

(1h,2l ) 7→ (1l ,2h)
(2h,1l ) 7→ (2l ,1h)(

1h,1l2l
) 7→ (

1l1h ,1h
)(

2h,2l1l
) 7→ (

2l2h ,2h
) .

As the two last candidates are original to the setting with transaction costs, a continuity argument based on the
baseline setting is not sufficient to characterized when the trade

(1h,2l ) 7→ (1l ,2h)

is the only one that is profitable.
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+2λµ (2l )

 a (2hs)

− (π(2hs)−π(2l ))
(
Pc −q +2q1{π(2hs)>π(2l )}

)
−ΘPd −a(2l )


r a (2l ) = κ (2l ,π(2l ))+O (γ)

+λ21

 a (1l2l )

− (π (1l2l )−π(2l ))
(
Pc −q +2q1{π(1l2l )>π(2l )}

)
−a (2l )



+2λµ (1h)

 a (2h2l )

− (π (2h2l )−π(2l ))
(
Pc −q +2q1{π(2h2l )>π(2l )}

)
−ΘPd −a(2l )


r a (2h2l ) = κ (2h,π (2h2l ))+O (γ)

+λ21

 a (1h)

− (π(1h)−π (2h2l ))
(
Pc −q +2q1{π(1h))>π(2h2l )}

)
−a (1h2h)


r a (2h1h) = κ (2h,π (2h1h))+O (γ)

+λ21

 a (1h)

− (π(1h)−π (2h1h))
(
Pc,0 −q +2q1{π(1h))>π(2h1h )}

)
−a (2h1h)

 (2.10)

of the value functions. The illiquid asset trades at the price

Pd = η2l (a(1h)−a (1l1h))+η1h (a (2h2l )−a(2l ))+O (γ),

which is a weighted average of the reservation values of the two traders.

I add two comments. First, the system (2.10) is linear in the unknowns “a(·)”. As a result, my

efforts will be focused on the characterization of the equilibrium holdingsΠ and mid-price Pc

of the liquid asset. The value functions and bargained prices then follow.

Second, there are now six types instead of four in the baseline model. Let us see why. With

proportional transaction costs, the marginal cost of buying the liquid asset and the marginal

revenues from selling the liquid asset are strictly different. As a result, if the type change

1h 7→ 1l

triggers a purchases of the liquid asset but the type change

2l 7→ 1l

triggers a sale, the risk profile of an agent of current type 1l depends on what her previous types

56



2.3. Transaction Costs

was. This means that a correct analysis of the mode with transaction costs must sometimes

complement the current type with the previous type. Formally, I split the type 1l into the

subtypes 1l1h and 1l2l . Similarly, I split type 2h into the subtypes 2h2l and 2h1h . The absence

of a well-defined marginal price makes the analysis of the additional sub-types necessary.

The absence of a marginal price also makes a characterization of the equilibrium holdingsΠ

and mid-price Pc challenging and best split into two steps.

The first steps assumes a “pattern” of trading on the liquid market p and derives the optimal

holdings Π(p). Formally a pattern of trading on the liquid market indicates for each type

change whether it triggers a purchase, a sale, or no trade on the liquid market. Formally, the

pattern of trading p is an element of

P
∆= {b, s,;}#{type shocks} ,

with b standing for “buy”, s for “sell”, ; for “do not trade”, and #
{
type shocks

}
being the

number of different type shocks that an investor can incur. As can be checked, in Figure 2.4,

this number equals 6 in the current setting.

If the investor places, say, a buy order, both an adjustment upward and an adjustment down-

ward of the order are done with the ask-price as the marginal price. In particular, by defining

when investors trade and in which direction, I defined a set of marginal prices from which I

can derive optimal holdings. This is the object of the next proposition.

Proposition 19. Let us take as given a pattern p of trading on the liquid market. Then, the

equilibrium mid-price Pc (p) and holdingsΠ(p) for the liquid asset are uniquely characterized

as follows.

1. For any time t , the holdings process (πt )t satisfies both

Pc +q ≥Et

[∫ τ

t
e−r (s−t ) (∂πκ (isθs ,πt ))) ds

]
+Et

[
e−rτ (

Pc +q Pt
[
buy next

]−q Pt [sell next]
)]+O (γ)

(2.11)

and

Pc −q ≤Et

[∫ τ

t
e−r (s−t ) (∂πκ (isθs ,πt ))) ds

]
+Et

[
e−rτ (

Pc +q Pt
[
buy next

]−q Pt [sell next]
)]+O (γ),

(2.12)

with

τ
∆= inf{s > t : πs 6=πs−}
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being the time of the next trade on the liquid market,

Pt
[
buy next

] ∆= Pt [πτ >πτ−]

being the probability of the next trade being a purchase, and

Pt [sell next]
∆= Pt [πτ <πτ−]

being the probability of the next trade being a sale.

2. If τ coincides with the next change of type, the first-order conditions (2.11) and (2.12)

become

Pc ≥ 1

r
(∂πκ (itθt ,πt ))−q −2q Pt [πτ >πτ−]

λτ

r
(2.13)

and

Pc ≤ 1

r
(∂πκ (itθt ,πt ))+q +2q Pt [πτ >πτ−]

λτ

r
, (2.14)

respectively, with τ being the arrival rate of the next type change.

3. If the investor purchased the liquid asset at time t , meaning that

πt >πt−,

then, the inequality (2.11) holds with equality. Similarly, if the investors sold the liquid

asset at time t , meaning that

πt <πt−,

then the inequality (2.12) holds with equality.

4. The optimal holdings adopted after a trade are affine decreasing in the price Pc . In

particular, there is exactly one equilibrium price Pc that clears the liquid market.

Proof. See the Appendix. The argument is based on Section 4.2 in Gârleanu [2009].

If all the components of π̂ are distinct, the time of the next trade always coincides with the

next type change and we can focus on the case 2 of the last proposition. However, when the

transaction costs are relatively large, it may be optimal to sometimes refrain from trading after

a type change. This will translate into some of the components ofΠ being identical, and into
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the next trade time not being distributed as an exponential random variable. As a result, we

must sometimes rely on the general first-order conditions in the point 1 of the last proposition.

I now turn to the second steps for the characterization of the equilibrium mid-price Pc and

holdingsΠ. This second step starts with the vector of holdings defined in Proposition 19 and

derives a new pattern p ′ for the liquid market. Namely, the differences between the holdings in

Proposition 19 define when the investors buy and when they sell. This defines the components

of p ′ corresponding to the values “buy” or “sell” in the original pattern p. For those type

changes that did not trigger any trading in p, we can check whether this behavior is optimal.

Namely, we can check whether the first-order condition for a marginal purchase (2.11) holds

and, should this not be the case, set the relevant component to p ′ equal to “buy”. Similarly,

should (2.12) not hold, we set the relevant component of p ′ equal to “sell”.

Combining the two steps defines a mapping from the set P of trading patterns into itself P

and solving for the equilibrium mid-price Pc and holdingsΠ amounts to finding a fixed-point

of this mapping. The next proposition indicates that such a fixed-point always exists. The

proof of the proposition is constructive and the basis for a numerical solution of the model.

Proposition 20. For any transaction costs q, there exists an equilibrium with transaction

costs.13These equilibria are continuous in q and are characterized by a sequence of thresholds

q̂1, q̂2, . . . q̂5.

As long as the transaction costs are small enough, meaning

q < q̂1,

then, the pattern of trading p ∈P on the liquid market is the same as in the baseline setting

without transaction costs. For larger transaction costs, meaning

q̂1 ≤ q < q̂2,

one of the transactions in the pattern p collapses, meaning that one of the components of p

switches from either “buy” or “sell” to “do not trade”. One more transactions collapses at each

thresholds. For large enough transaction costs, meaning

q̂5 ≤ q,

there is no trading at all on the liquid market and each investor holds the same holdings Sc in

the liquid asset c.14

13Recall, however, that the ex ante assumption regarding the trading pattern on the OTC market must hold.
14Arguably, referring to an asset that nobody trades as being liquid may seem clumsy. I however understand an
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The equilibrium holdingsΠ and price Pc , along with the thresholds q̂1 . . . q̂5, can be character-

ized in closed-form.

Proof. See the appendix.

The exact equilibrium behavior depends on the relative values of the exogenous parameters.

In particular, an exhaustive description of the order in which the six trades collapse requires

the handling of a large number cases.15 These cases are qualitatively similar but distinct in

terms of algebraic expressions. For this reason, I make certain parametric assumptions.

First, I want the assets to be substitutes for each other, meaning that investors buy the liquid

asset while attempting to buy on the OTC market and then reduce their exposure to the

liquid asset once the trade on the OTC market is completed. As shown below, the suitable

assumptions to capture this behavior are

σcd
(∆)=

(
ac

bc

)
·
(

ad

bd

)
> 0 (2.15)

and (
ac

bc

)
·
(
α1 −α2

β1 −β2

)
> 0. (2.16)

Second, I want the marginal buyer of the asset to have a high valuation. A marginal investor

with a high valuation for the asset ensures that illiquidity decreases the price of the illiquid

asset. Keeping in mind our prime example of the OTC market as being a bond market, it seems

empirically clear that the illiquidity spread should be positive. Third, I assume that a majority

of investors have a high valuation for the illiquid asset. Equivalently, I may assume that a

given investors spends more time with a high valuation than with a low valuation. This is

consistent with an interpretation of the low-valuation state representing a transitory crisis

requiring the liquidation of certain illiquid positions. The next assumption collects these three

requirements on the model parameters.

asset as being liquid if it can be traded without delay. Even with large transaction costs, investors can trade the
liquid asset whenever they want.

15In the baseline model, the trading on the liquid market can be decomposed as a component due to a trade
on the OTC market and a component due to a change of exposure. Depending on the sign of each component,
there can be 4 = 2×2 asymptotic trading patterns p when the transaction costs q vanish. Each asymptotic trading
pattern comprises 6 trades. A priori, there are 5! = 120 ways of choosing the order in which these trades vanish (the
two last trades must vanish simultaneously). A gross a priori estimate of the number of cases to consider for a
comprehensive analytic characterization of an equilibrium with transaction costs is thus 4×5! = 480. This number
must be adjusted downward, because certain trades must disappear before other ones, as can be seen in the proof.
The overall number of cases would remain substantial, though.
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Assumption 21. 1. The liquid asset is a substitute for the illiquid one, meaning

σcd
(∆)=

(
ac

bc

)
·
(

ad

bd

)
> 0,(

ac

bc

)
·
(
α1 −α2

β1 −β2

)
> 0.

(2.17)

2. A spell with a low valuation is shorter on average than a spell with a high valuation,

meaning

λ12 >λ21.

3. The marginal holder of the asset traded OTC has a high valuation, meaning

µ2• > Sd

Θ
.

In the next proposition, I partially characterize an equilibrium under Assumption 21.

Proposition 22. Let us assume that Assumptions 21 holds. The threshold q̂1 until which every

type change triggers a trade is

q̂1 = 1

2

rγΘσcd

r +λ12 +2Λµ(2l )
.

For q < q̂1, the trading pattern is

investors


whose valuation for the illiquid asset increases buy

whose valuation for the illiquid asset decreases sell

who buy the illiquid asset sell

who sell the illiquid asset buy

 the liquid asset.

and the equilibrium mid-price Pc is

Pc = Pc |q=0 +Φ0q +O (γ), (2.18)

with the limit value Pc |q=0 being the same as the price in the baseline setting and the sensitivity

Φ0 being

Φ0
∆=

(
1

λ12
− 1

λ21

)(
λ21µ(2l )+λ12µ(1h)−2Λµ(1h)µ(2l )

)
.

The sensitivityΦ0 is increasing in the meeting rate λ.
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For larger transaction costs, meaning

q̂1 < q,

the sellers of the illiquid asset keep the same liquid holdings both while searching for a counter-

party and after having traded OTC. For transaction costs in the interval

q ∈ [
q̂1, q̂2

)
,

the equilibrium mid-price Pc is

Pc = Pc |q=0 +Φ1q +O (γ), (2.19)

with

Φ1
∆=Φ0 + 2

λ12
2Λµ(1h)µ(2l ).

An explicit expression for q̂2 is stated in the proof.

The sellers are on the short-side of the market. Finding a counter-party is thus comparatively

easy for them and they expect the search for a counter-party to be brief. When weighing the

costs and benefits of hedging a sub-optimal on the liquid market, the sellers are thus the first

ones to reduce their trading frequency.

The mid-price Pc is increasing in the meeting rate Λ. The intuition for this result is the

following. First, by increasing the meeting rateΛ, the volume of trading on the OTC market

increases, meaning that the rate at which investors undo their hedges increases as well. Hence

increasingΛ increases the rate at which investors enter both the type

1l1h

of those agents having successfully sold the illiquid asset and the type

2h2l

of those agents having successfully bought the illiquid asset. Now, Assumption 21 ensures

that investors recovers from the low-valuation state 1l1h faster than they drop from the high-

valuation state 2h2l . Hence, in a stationary equilibrium, it must be that the mass

µ (1l1h)
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increases by less than

µ (2h2l ) .

As the 1l1h investors last bought the liquid asset and the 2h2l investors last sold the liquid asset,

increasing the meeting rateΛ increases the proportion of investors across the population who

last sold the liquid asset. Proposition 19 shows how this increase increases the demand for the

liquid asset and, as a result, increases the equilibrium price Pc .

The mid-price Pc is increasing inΛ. Importantly, however, the joint effect of the search friction

and the transaction costs on Pc is ambiguous. More specifically, the price difference

Pc −
(

Pc |(q, 1
Λ

)=(0,0)

)
can be either positive or negative, with an exact characterization depending on the difference

µ2•− Sd

Θ

between the proportion of investors with a high-valuation and the supply of the illiquid asset.

When the first trade collapses at q = q̂1, the dependence of the mid-price on the transaction

costs is shifted by

2

λ12
2Λµ(1h)µ(2l ),

a positive quantity. This is intuitive. Indeed, the first trade to collapse is a purchase. Hence,

this collapse increases the proportion of investors who last sold the liquid asset. According

to Proposition 19, this increases the demand for the liquid asset, which results in a higher

equilibrium price Pc .

To sum up, propositions 20 and 22 describe how trading on the liquid market collapses when

the transaction costs increase. The most interesting consequences of this collapse is probably

its impact on the OTC market.

The solution to the HJB equations (2.10) can be characterized in closed-form using an appro-

priate software. I can thus explore how the transaction costs on the liquid market impact the

price of the asset traded OTC. I do so in Figure 2.6.16

16The equilibrium quantities are, strictly speaking, available in closed-form. However, the expressions for the
equilibrium quantities are cumbersome and, in my view, difficult to interpret. This is why I focus on a numerical
example. Further, checking the consistency of the trading pattern on the OTC market is also a cumbersome exercise
that is best performed numerically.
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Figures 2.5 shows us an ambiguous relationship between the transaction costs incurred on the

exchange and the prices bargained on the OTC market. In particular, the bargained prices are

first decreasing in the transaction costs, up to a threshold, and then tends to be increasing.

The threshold is increasing in the search friction on the OTC market.

This pattern can be intuitively understood with the help of Proposition 22. The first thing to

realize is that investors are more affected by the transaction costs if they trade more. Now,

investors on the short-side of market trade faster on OTC market because they hedge and

unhedge at a higher rate on the liquid market. As a result, they are comparatively more affected

by an increase of the transaction costs. Following the literature, I chose the seller of the illiquid

asset to be on the short side of the market. As a result, at first, any increase of the transaction

costs is relatively more harmful to the sellers’ outside options, which decrease the bargained

price. This explains the decreasing portion of the curves in Figure 2.5. If the transaction costs

increases further, investors must balance the cost and benefits of hedging a sub-optimal on

the OTC market with the liquid asset. On the one hand, hedging the sub-optimal exposure

improves the risk-profile while searching for a counter-party. On the other hand hedging

and undoing the hedge means that round-trip transaction costs are incurred. Intuitively, the

hedge is only rational if the expected search time is large enough when compared with the

transaction costs. The agents on the short-side of the market can trade faster on the OTC

market. As a result, when the transaction costs q increase, they are the first ones to refrain

from hedging with the liquid asset. The point at which the investors on the short side of the

market adjust their trading pattern for the liquid asset is the threshold q̂ in Proposition 22.

This threshold corresponds to the kinks in Figure 2.5. Beyond the threshold q̂ , investors on the

long side of the market trade more on average that investors on the short side. As a result, any

further increase of the transaction costs will disproportionately hurt those agents on the long

side of the market. As the buyers are on the long side of the market, any such increase of the

transaction costs makes the bargaining position of the buyers relatively worse, which induces

a price increase.

Finally, interesting to note that the spillover effect of the transaction costs on the OTC market is

much stronger than the effect on the liquid market itself. The spillover effect is of the order of

50bp for transactin costs of 50bp, whereas the effect on the liquid market itself is approximately

five times smaller.

2.4 Conclusion

I studied an economy in which risk-averse investors share endowment risk by trading two

imperfectly correlated assets. The first one is traded on an exchange, with a constant bid-ask

spread, whereas the second is traded on on illiquid OTC market. I follow Duffie et al. [2007] for

the modeling of the OTC market. Liquidity, measured by the meeting rate, affects investors

64



2.4. Conclusion

both because contacting a potential trading partner is time consuming and because prices are

not competitive. The interaction between the two markets is driven by the investors who use

the exchange as a substitute for the OTC market and hedge on the exchange while searching

for a counter-party on the OTC market.

I show the existence of an equilibrium for any level of transaction costs and obtain closed-form

expressions for the equilibrium quantities. The existence argument is non standard because

the transaction costs introduce discontinuities in the equilibrium equations.

The search frictions on the OTC market affect the price of the asset on the exchange. As made

clear by Gârleanu [2009], the equilibrium effect of transaction costs depends on the imbalance

between the investors who last purchased and those who last sold the asset. When the meeting

rate on the OTC market varies, so does the rate at which investors hedge (by both buying and

selling) on the exchange, and whether the buying or selling pressures dominates depends on

the dynamics of the hedging demand. I show that, when low valuation spells are relatively

short, the search friction on the OTC market increase the risk premium on the exchange.

The transaction costs on the exchange have two main effects. First, they make the marginal

cost of trading on the exchange higher. Investors optimally react to these costs by reducing the

size of their transactions when they trade. Second, the transaction costs also make trading on

the exchange less frequent. Indeed, when an investors receives a shock to her hedging demand,

she balances the costs of trading on the exchange, the optimal risk-profile that she may achieve

by trading, and when this risk-profile will have to be adjusted again. When the transaction

costs are high enough, the round-trip transaction costs can dwarf the improvement to the

risk-exposure and investors optimally decide not to trade after certain idiosyncratic shocks.

As the transaction costs increase the costs of hedging, they also affect the outside options of

the agents bargaining on the OTC market. As I show with numerical examples, the relationship

between the transaction costs on the exchange and the price bargained on the OTC market is

non-monotonic.

I can draw a parallel between the predictions of my model and current regulatory proposals

aiming at taxing CDS trading. The equilibrium behavior of my model indicates that making

CDS trading costly may indeed decrease bond yields. The equilibrium relationship between

taxes and yields is, however, non-monotonic, and depends in a rather subtle way on the

strength of the trade motives, their dynamics, and the relative levels of the two types of

illiquidity. A financial transaction tax may thus decrease debt financing, but the exact effect is

hard to predict. Introducing a financial transaction tax to decrease borrowing yields seems to

be a hazardous strategy.
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In some future work, I intend to intermediate the level of frictions on the two markets. More

specifically, the level of transaction costs on the exchange will be optimally chosen by an

intermediary maximizing her revenues, whereas the trading on the OTC market will be inter-

mediated by dealers who optimally choose, for a cost, the frequency at which they can get in

touch with investors.
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bond valuation

t

low

high

bond holdings

CDS
t

Figure 2.1: These plots represent stylized paths for the valuation (above) and holdings (below)
of a given investor. For the holdings, the solid line represents the holdings in the illiquid asset
traded OTC, say a bond, and the dashed line the holdings in the liquid asset, say a CDS contract
(as a protection seller). The shaded areas represent the periods during which the investor is
searching for a counter-party on the OTC market to re-balance her illiquid holdings. During
these periods, the exposure to the asset traded on the exchange is adjusted so as to mitigate
the sub-optimal exposure to the asset traded OTC. These plots illustrative and not based on
the parameters in Table 1.1
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bond valuation

t

low

high

bond holdings

CDS t

low q

bond holdings

CDS t

average q

bond holdings

CDS t

large q

Figure 2.2: These plots illustrate the impact of introducing transaction costs on the liquid
market. The path of valuations, at the top, is the same as in Figure 2.1. There are then three
stylized paths of holdings in the illiquid asset traded OTC, say a bond, and the holdings in the
liquid asset, say a CDS contract (as a protection seller). In the second panel, the transaction
costs q are low (second panel) and the investor adjusts her risk-profile using the CDS whenever
she is trying to trade the bond. In the third panel, the transaction costs q are larger and an
investor only find it optimal to trade the CDS, and incur the round-trip transaction costs, when
she expects the re-balancing of her bond portfolio to be a lengthy process. For example, the
investor hedges her exposure when she is on the long side of the market but not when she is
on the short side. In the fourth panel, the transaction costs q are so high that investors do not
hedge their sub-optimal bond exposure anymore. These plots are illustrative and not based
on the parameters in Table 1.1.
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Figure 2.3: The four types of investors in the base model. Each arrow indicates a flow. The
number on each arrow indicates the transition intensity for a given investor.
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Figure 2.4: The six types of investors in the model with proportional transaction costs. Each
arrow indicates a type flow. The number on each arrow indicates the transition intensity
for a given investor. A solid arrow indicates a buy transaction on the exchange. A dashed
arrow indicates a sell transaction on the exchange. The transaction signs are based on the
assumption that 2-agents have a high valuation of the asset traded OTC.

70



2.5. Figures

Table 2.1: Base parameters for the setting with transaction costs

notation parameter base value
Sc supply of the asset on the exchange 1
Sd supply of the asset traded OTC 1

η1h , η2h bargaining powers 1
2

λ21 arrival rate of idiosyncratic liquidity shocks 1
5

λ12 recovery rate from a liquidity shocks 2

r risk-free rate 0.037
mc expected payouts of the asset on the exchange 0.05
md expected payouts of the asset traded OTC 0.05

(ad ,bd ) exposures of asset traded OTC (−0.076,−0.528)
(ac ,bc ) exposures of liquid asset (−0.534,0)(
α1,β1

)
exposures of endowment of type 1 (−1.335,1.156)(

α2,β2
)

exposures of endowment of type 1 (0.133,−0.116)

γ coefficient of absolute risk aversion 5.01
Θ holdings in the asset traded OTC 2.5

Choice of the parameters The asset supplies are normalized to 1 and I assume symmetric
bargaining powers. The dynamics of the idiosyncratic shocks are taken from Duffie et al.
[2007]. The risk-free rate and expected payouts of the assets are the same as in Gârleanu [2009]
(the calibration in Gârleanu [2009] is itself based on Campbell and Kyle [1993] and Lo et al.
[2004]). The exposures of the assets and endowments are chosen to satisfy the three following
conditions.

1. The payouts of each risky asset have a volatility of 0.285, which is the same as in Gârleanu
[2009].

2. The correlation between the payouts of the two risky asset is 0.5, which is the same as in
Longstaff [2009].

3. There is no aggregate endowment risk, which is the same as in Gârleanu [2009].

These three conditions do not uniquely characterize the exposures. As a result, I arbitrarily set
bc to zero. This leaves four possible sets of parameters, among which I again choose arbitrarily.
Finally, the risk aversion γ and holdings Θ in the illiquid asset are chosen to have an equity
premium return of 0.031 for each or the risky asset when the search friction vanishes. This
equity premium is the same as in Gârleanu [2009].
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Figure 2.5: Price Pd of the illiquid asset traded OTC as a function of the transaction costs q
for the liquid asset. For the sake of comparison, the price Pd is normalized by the value Pd ,0

corresponding to the absence of transaction costs. The relationship between the transaction
costs on the liquid market and the price of the illiquid asset traded OTC is ambiguous. When
the transaction costs are small when compared to the search friction, the price bargained
OTC is decreasing in the transaction costs. Beyond a certain threshold, however, the price
bargained OTC becomes increasing in the transaction costs. This figure 2.5 is based on the
parametrization in Table 1.1.

72



2.5. Figures

0 0.0025 0.005
q

0.7

0.72

0.74

Pd

Λ=250

Λ=50

Λ=12

Λ=6

Figure 2.6: Price Pd of the illiquid asset traded OTC as a function of the transaction costs q
for the liquid asset. This plot displays the absolute prices used to calculate the relative prices
in Figure 2.5. The price effect of the search friction on the OTC market appears to dominate
the spill-over effect coming from the transaction costs on the liquid market. This figure 2.6 is
based on the parametrization in Table 1.1.
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Figure 2.7: Price Pc of the liquid asset as a function of its transaction costs q . The price Pc of
the liquid asset is decreasing in the transaction costs. The sensitivity of Pc to the transaction
costs is increasing in the search friction. In terms of magnitude, the impact of the transaction
costs q on the price Pc of the liquid asset is of the order of 10bp. This is about one fifth of
the spillover effect induced by the transaction costs on the OTC market. The magnitude of
the spillover effect is of about 50bp, as shown in Figure 2.5. This figure 2.7 is based on the
parametrization in Table 1.1.
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3 Asymmetric Information and Inven-
tory Concerns in Over-the-Counter
Markets

We1 study how transparency, modeled as information about one’s counterparty liquidity

needs, affects the functioning of an over-the-counter market. In our model, investors hedge

endowment risk by trading bilaterally in a search-and-matching environment. We construct

a bargaining procedure that accommodates information asymmetry regarding investors’

inventories. Both the trade size and the trade price are endogenously determined. Increased

transparency improves the allocative efficiency of the market. However, it simultaneously

increases inventory costs, and leads to a higher cross-sectional dispersion of transaction

prices. For investors with large risk exposure, the increase of the inventory costs dominates the

benefits of the market efficiency. We link the model’s predictions to recent empirical findings

regarding the effect of the TRACE reporting system on bond market liquidity.

3.1 Introduction

A common concern about over-the-counter (OTC) markets is their opaqueness—investors

transact, often unaware of prices available from other counterparties and with little knowledge

of trades negotiated recently.2 Given the important role that OTC markets played in the global

financial crisis, many regulators have attempted to shed some light on those so-called dark

markets.3 Perhaps the most notable reform aiming at an increased transparency was the

1This chapter is joint work with Julien Cujean (Robert H. Smith School of Business, University of Mary-
land, 4466 Van Munching Hall, College Park, MD 20742, USA; +1 (301) 405 7707; www.juliencujean.com;
jcujean@rhsmith.umd.edu). We thank Pierre Collin-Dufresne, Jens Dick-Nielsen, Julien Hugonnier, Semyon
Malamud, and Lasse Pedersen for their comments and suggestions.

2For a reference, see Duffie [2012].
3For example, the Financial Stability Board names transparency and the public dissemination of trade data as

a main objective of introducing trade repositories for OTC derivatives trading. See, for instance, Board [2013] for
more detail.
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Dodd-Frank Act.4

There are costs and benefits associated with an increased transparency. For instance, post-

trade transparency—the availability of past transaction data—may lead to a more efficient

asset allocation. It may, however, expose dealers to predatory behaviors and significantly

reduce their incentives to take on inventory risk and provide liquidity. It is thus important

question to determine to whom the costs and benefits of transparency accrue.

To address this question, we develop a general equilibrium model of an OTC market in which

investors trade an asset to share endowment risk. Trading the asset first requires finding a

counter-party, and we follow the search-and-matching approach developed by Duffie, Gar-

leanu, and Pedersen (2005, 2007). Upon matching, agents bargain on the conditions of the

transaction. To model transparency, we introduce information asymmetry among traders. We

define transparency as a traders’ ability to get information about their counterparties’ inven-

tory. Information asymmetry creates an adverse selection problem that makes it more difficult

to execute large trades.5 This aspect allows us to determine how regulatory requirements (e.g.,

TRACE) make inventories riskier.

In the presence of asymmetric information, the usual Nash bargaining solution characterizing

bilateral trades is inadequate. We select an alternative bargaining protocol, which resembles

the real-world mechanism used in the dealership market. Namely, one agent (say agent 1)

posts a quote and the other (say agent 2) decides how many shares to buy or sell at that price.6

We assume that, before posting the quote, agent 1 receives a signal about the inventory of agent

2. We view this signal as an attempt of agent 1 to extract information about agent 2’s liquidity

needs from past trading data, a natural outcome of post-trade transparency. The quality of

this signal precisely captures the notion of transparency we pursue: the more detailed trading

data is available, the better the information about inventory concerns of any given trader is.7

Information asymmetry significantly complicates the analysis of the model. Our model,

however, remains very tractable. We first solve for an investor’s optimal trading strategies

taking the cross-sectional distribution of inventories as given. Second, we endogenize this

cross-sectional distribution. In particular, optimal trading strategies define the inventory

dynamics, which, in turn, determine the cross-sectional distribution of inventories. We

demonstrate that optimal strategies are linear in the inventory and signal of investors, making

4The corresponding regulation for the US Bond market, the Trade Reporting And Compliance Engine (TRACE)
exists since 2002. The corresponding European reform is the Market in Financial Instruments Directive (MiFID II).

5A quote request is usually followed by both a bid and an ask price being quoted. In this case, both prices
would probably be tilted to disguise the attempted rip-off.

6Quotes on bond markets do not usually depend on the quantity exchanged. See, Li and Schüerhoff (2012).
7The effects of post-trade transparency on inventory risk are particularly strong is markets with moderate/slow

trading activity. In this case, even anonymized post-trade transparency can make it possible to infer traders’
identities from post-trade data.
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it possible to solve for a stationary equilibrium in closed form.

We show that an increase in transparency has three main implications for inventory costs and

several dimensions of liquidity.8 First, we show that transparency always increases inventory

costs. This happens via two different channels. On the one hand, transparency exposes any

given investor with large inventories to predatory pricing. On the other hand, as transparency

improves the allocative efficiency of the market, it becomes more difficult for an investor with

excessive exposure to find a counter-party with large and opposite liquidity needs. This second

effect exacerbates the first one and is driven by the endogenous distribution of inventories.

Second, we get the more intuitive result that increased transparency always leads to a more ef-

ficient allocation of the asset, leading to less dispersion in inventory risk across the population

of investors. As a consequence, we show that the cross-sectional variance of the trade sizes at

any given moment is monotone decreasing in the degree of transparency of the OTC market.9

These two implications together imply that the effect of transparency on investors’ value

function is ambiguous. On average, investors benefit from an increased transparency and the

resulting improvement in the allocative efficiency. In particular, transparency improves welfare.

However, those investors with a sufficiently large (long or short) exposure find it increasingly

costly to liquidate their position and would benefit from a more opaque market. We obtain

an explicit expression for the exposure levels starting from which investors prefer opacity to

transparency. This result is in line with the heterogeneous reactions to the introduction of

TRACE, with negative reactions on the part of many institutional investors.10 As our model

predicts, transparency is detrimental to agents facing large exposures.

Finally, we show that the price dispersion—the cross-sectional variance of the transaction

prices at a given moment—on the OTC market is increasing in the transparency of that market.

Two opposite channels operate to generate this result. First, investors being risk averse, the

price of a transaction depends on investors’ reservation values for trading. As transparency

tends to make risk sharing more efficient and to reduce the dispersion of the reservation

values, there is a first channel whereby transparency reduces the cross-sectional dispersion

of prices. Second, transparency simultaneously increases inventory costs, and the price of

a given transaction will therefore drift away from the competitive price when transparency

increases. In equilibrium, this second effect dominates, and the dispersion of prices increases

with the transparency of the market.

8We define the inventory costs as the reservation value of an investor who deviates from a zero risk exposure.
9A more natural measure of the trade sizes would be the average size. This is, actually, the average across all

the trades of the absolute value of the quantity exchanged. Due to technical difficulties, we cannot characterize
this quantity analytically.

10See, for instance, Decker [2007] and Bessembinder and Maxwell [2008].
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Literature review Our model builds on the literature modeling OTC markets. This literature

started, to a large extent, with Duffie et al. [2005] and Duffie et al. [2007]. The bilateral trades

in these models are characterized by the Nash bargaining solution and, as a result, not natu-

rally suited to accommodate information asymmetry, inter-dealer market but no inventories.

Furthermore, the transaction size is exogenously fixed, which prevents a discussion of the

different costs and benefits to agents with moderate and large liquidity needs.

An alternative strand of literature considers the equilibrium effect of an intermittent, and

sometimes costly, access to a centralized market. This literature started with Lagos and

Rocheteau [2007] and Lagos and Rocheteau [2009]. These models allow for portfolio decisions,

but the inter-dealer is assumed to be competitive and dealers do not keep any inventories.

Our model is also related to classical references on inventory risk such as Ho and Stoll [1980]

and Ho and Stoll [1981]. These references do not consider, however, the feedback effect of the

intermediation on the liquidity needs of the investors. This equilibrium effect is at the core of

our analysis.

The explicit bargaining procedure that we devise means that our model is also related to

Samuelson [1984], Grossman and Perry [1986], Mailath and Postlewaite [1990]. In these

references, just like in the classical references on inventory risk, there is no feedback effect of

the quoting strategy on the distribution of valuations.

References such as Blouin and Serrano [2001], Duffie and Manso [2007], Duffie et al. [2009],

and , Duffie, Malamud, and Manso [2010] consider asymmetric information in decentralized

markets. However, these references focus on common value asymmetry whereas we analyze

a setting with private value asymmetric information. Also the references do not consider

portfolio decisions.

To obtain the equilibrium expressions in closed-form, we assume that agents are only risk-

averse with respect to certain risks. The same procedure was used, for instance, by Biais

[1993], Duffie et al. [2007], Vayanos and Weill [2008], Gârleanu [2009]. Other references using

“source-dependent” risk-aversions include Hugonnier et al. [2013] and Skiadas [2013].

Finally, in terms of formalism, the interaction between the distribution of types, the individual

policies, and the value functions, means that our model is related to the literature on mean-

field games, as introduced by Lasry and Lions [2007].

The outline of the paper is as follows. Section 3.2 describes the assets, investors, and other

exogenous elements of our model. Section 3.3 solves for the optimal policy of an individual.

Section 3.4 maps a certain trading pattern on the OTC market to a consistent cross-sectional

distributional distribution of types. Section 3.5 solves for the equilibrium of the model and

discusses its properties. Section 3.6 concludes.

78



3.2. Model

3.2 Model

In this section, we present the various exogenous elements of our model economy.

Assets and Investors

In our model, investors trade bilaterally to share risks. Our model is based on Lo et al. [2004],

from whom we borrow the specification of the trade motives, and on Duffie et al. [2005], from

whom we borrow the meeting technology on the OTC market. The exact bargaining procedure

that defines the trade details is original.

There are two assets. First, there is a risk-free bond freely traded and whose rate of return r is

exogenously given. Second, there is a risky asset (“the stock”) whose cumulated payouts

(D t )t≥0

is an arithmetic Brownian motion. Namely,

dD t = md dt +σd dBt , t ≥ 0,

with µ and σ being two constants and (Bt )t≥0 being a Brownian motion.

The economy is populated by a normalized continuum of investors. The investors trade the

stock for risk-sharing motives. Namely, each investor a receives an endowment(
ηa

t

)
t≥0

whose dynamics are given by{
dηa

t = Z a
t dD t

dZ a
t = σadB a

t
,

with
(
B a

t

)
t≥0 being an “idiosyncratic” Brownian motion independent from the one driving the

dividends of the stock. By idiosyncratic we mean that there is one such process per investor

and that these processes are sufficiently independent for a version of the Strong Law of Large

Numbers (SLLN) to hold cross-sectionally.

To sum up, the same aggregate risk factor drives the payouts of the stock and the endowment

of the agents over the short-term. However, the level to which an endowment is exposed to

this aggregate risk factor evolves in an idiosyncratic way.
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Trading

Illiquidity on an OTC market materializes in that a counter-party is only infrequently available,

does not necessarily want to trade the right quantity, and not necessarily at the right price. We

capture the first of these aspects by assuming that an investor can only contact a counter-party

at the jump times of a Poisson process with intensity λ. The counter-party who is contacted is

drawn uniformly from across the population.

Once two investors are in contact, they must evaluate whether or not they wish to trade the

stock and, if so, what the exact terms of the transaction should be.

On actual OTC markets, a common procedure to arrange a deal with a dealer is to ask the

dealer for a quote and, assuming that the quote is deemed good enough, indicate how much

of the asset one would like to either buy or sell. The quote usually consists of both a bid and

an ask price.

For the trading in our model, we assume a stylized version of the previous procedure. Namely,

once two investors are in contact, one of them quotes a binding price and the other one

chooses a quantity to be exchanged at the quoted price. The exact bargaining procedure

follows.
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Bargaining 1:

Assume that the investors a (like “asks”) just contacted the investor q (like “quotes”). These

investors are identified with their “types” za , zq , respectively. The distribution of the types

across the population is µ.

(i) a asks q for a quote.

(ii) if q finds it optimal to quote a price then

1. q receives a signal sa regarding the type of a. Namely,

sa = X za + (1−X )ζ, (3.1)

with X ∼ B(1,τ) and ζ∼µ being independent of each other and of both za and zq .

Intuitively, the signal is exact with a probability τ which we call the transparency of the

OTC market. In the other case, the signal is a pure noise.

2. q quotes a price p = p(q, sa) at which she is willing to trade with a

3. a chooses which quantity q(a, p) she would like to buy (if q ≥ 0) or sell (if q < 0).

4. q gives q units of the stock to a, a pays the amount pq(a, p) to q

end

(iii) the two investors part ways.

Two comments are in order. First, when quoting the price p, the investor q may not be fully

aware of the characteristics of a. This uncertainty regarding the valuation of one’s counter-

party is the type of opacity that our model captures.

Second, we assume that q quotes a unique price instead of both a bid and an ask price, as

actual dealers would do. This assumption is made for the sake of tractability. This, said, as

long as q has an accurate enough guess of a’s valuation for the asset, q knows with some

confidence whether the trade is going to be a buy or a sell. In particular, even if both a bid and

an ask prices are quotes, only one of them is truly relevant.

Preferences

The investors maximizes their expected utility from consumption and have a utility function

with constant absolute risk-aversion (CARA, or exponential, utility). Namely, an investor a

solves the individual optimization problem

sup
(c̃t )t≥0

E

[∫ ∞

0
e−ρtU (c̃t ) dt

]
(ip)
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with the utility function

U (x)
∆=−e−γx

over the “admissible” consumption policies. The constant γ> 0 is the coefficient of absolute

risk-aversion. A consumption policy (c̃t )t≥0 is admissible if it satisfies two conditions.

1. The consumption policy can be financed, meaning that it satisfies the budget constraint

dw̃ a
t = r w̃t dt − c̃t dt +dηa

t + θ̃t dD t − P̃d dθ̃t , t ≥ 0. (bc)

In this last expression, the quantities with a tilde (̃·) are endogenously chosen, whereas

the other ones are fully exogenous. The interpretations of the endogenous quantities

are as follows. w̃ a
t denotes the amount invested in the bond and θ̃t the number of stock

shares held. The holdings θ̃t can only be adjusted when another investor is met and,

during such a meeting, both the change in holdings dθ̃t and the payment P̃d dθ̃t are

defined by the bargaining procedure described in Table 1. That is, P̃d is not a unique

price in that it is contingent on the types of agents involved in a particular meeting.

2. The wealth process (w̃t )t≥0 satisfies the transversality condition

lim
T→∞

E
[
e−rγw̃T

]= 0. (tc)

This regularity condition forbids the “financing” of consumption by an ever increasing

amount of debt.

An agent is exposed to risky cash-flows both via her endowment and via her stock holdings.

However, both of these exposures are driven by the same risk factor. For convenience and ease

of interpretation, we thus define the actual exposure of the investor a as

za
t
∆= Z a

t +θt

and rewrite the budget constraint as

dw̃ a
t = r w̃t dt − c̃t dt + za

t dD t −Pd dθt .

The actual exposure follows a jump diffusion,

dza
t = dθt +σa dB a

t , (3.2)
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with the jump part stemming from the trading and the diffusion part stemming form the

idiosyncratic variation of the endowment exposure.

The actual exposure of an investor will define both her bargaining behavior and her value

function. Consequently, the actual exposure of an investor is also referred to as the type of an

investor. Also, during the bargaining procedure, the signal received by the quoter is about the

type of her counter-party.

3.3 Individual Problem

A given investor takes as given the aggregate quantities of the model and chooses her consump-

tion and bargaining policies to solve her individual problem (ip). Aggregating these individual

“best responses” yields new aggregate quantities. When we will solve for an equilibrium, we

will solve for a fixed point over these aggregate quantities.

In this section, we solve for the individual policies of the agents and do so by the dynamic

programming approach, meaning by solving a Hamilton-Jacobi-Bellman (HJB) equation.

First, we define the value function at time t of an investor a by

V (t , w, z)
∆= sup

(c̃s )s≥t

E

[∫ ∞

t
e−ρ(s−t )U (c̃s) ds

∣∣∣∣w a
t = w, za

t = z

]
,

with w a
t standing for a’s wealth at time t and za

t standing for a’s type at time t . Let us take as

given an optimal consumption policy (ct )t≥0 and make two assumptions. First, the environ-

ment is stationary, meaning that the beliefs regarding the aggregate quantities are constant

over time. Second, in terms of expected utility, an agent is fully described by her current wealth

w a
t and current type za

t .11 Then, one can write(∫ t

0
e−ρsU (cs) ds +e−ρt V (wt , zt )

)
t≥0

=
(
E

[∫ ∞

0
e−ρsU (cs) ds

∣∣∣∣F a
t

])
t≥0

, (3.3)

with F a
t standing for the information available to a at time t . We left out the time as an

argument of the value function because of the stationarity assumption.

As the process on the right-hand side of (3.3) is a martingale, so is the one on the left-hand

side, and its expected rate of change must be zero. Now, assuming that the value function is

regular enough for Itô’s lemma for jump-diffusions to hold, the expected rate of change of the

11These assumptions will be justified ex-post.
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process on the left-hand side is

1

dt
E

[
d

(∫ t

0
e−ρsU (cs) ds +e−ρt V (wt , zt )

)]

= e−ρt



U (cs)−ρV (w, z)+Vw (w, z) (r w − c + zmd )

+1
2 (Vw w (w, z)z2σ2 +Vzz (w, z)σ2

z )

+λEL (zq ,sz )

[
1{zq∈A}

(
V

(
w −qP

(
zq , sz

)
, z +q

)
−V (w, z)

)]

+λ
[

EL (za ,sa )
[
V

(
w +Q

(
za , p

)
p, z −Q

(
za , p

))]
−V (w, z)

]+


.

(3.4)

On the right-hand side, the first line corresponds to the utility from current consumption and

the drift term of the value function. On this line, the consumption rate ct is chosen by the

investor.

The second line corresponds to the diffusion of the value function. There is no choice variable

on this line.

The third line corresponds to the jump resulting from asking another investor for a quote.

Namely, zq is the type of the investor who was contacted and is drawn from the cross-sectional

distribution of types µ. This distribution µ is taken as given by the individual investors. On

this same line, sz is the signal received by the potential quoter. In line with the definition (3.1),

sz = Xz z + (1−Xz )ζz ,

with the two random variables Xz ∼ B(1,τ) and ζz ∼µ being independent of each other and

of all the other random quantities. The set A appearing in the indicator function represents

the types of the investors who are ready to offer a quote. This set is also taken as given. The

function

A×R → R

(zq , sz ) 7→ P
(
zq , sz

)
represents the quoting strategy adopted by the other investors, and is also taken as given. On

this third line, the purchase q is chosen by the investor after observing the quote P (zq , sz ).

The fourth line corresponds to the jump resulting from receiving a quote request. Namely, za

is the type of the investor who asked for a quote and is also distributed according to µ. The

signal regarding za , sa is given by

sa = Xa za + (1−Xa)ζa ,
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with Xa ∼ B(1,τ), ζa ∼µ, and the same independence assumptions as above. The function

R2 → R

(za , p) 7→ Q
(
za , p

)
represents the purchase strategy adopted by the other investors, and is also taken as given. In

this line, the quote p is chosen by the investor. The positive part in the expectation (“[·]+”)

represents the optimal decision of quoting or not.

Combining the martingale property of the processes in (3.3), the expected dynamics in (3.4),

and the intuition that the optimal policy should be locally given by a maximization of these

expected dynamics over the choice variables, we derive the HJB equation for the individual

problem (ip). Namely,

ρV (w, z) =sup
c̃

{U (c̃s)−Vw (w, z)c̃}

+Vw (w, z) (r w + zmd )

+ 1

2

(
Vw w (w, z)z2σ2 +Vzz (w, z)σ2

z

)
+λEL (zq ,sz )

[
1{zq∈A}

(
supq̃ V

(
w − q̃P

(
zq , sz

)
, z + q̃

)
−V (w, z)

)]

+λ
[

EL (za ,sa )
[

supp̃ EL (za ,sa )
[

V
(
w +Q

(
za , p̃

)
p̃, z −Q

(
za , p̃

))∣∣ sa
]]

−V (w, z)

]+
,

(3.5)

with the random variables zq , sz , za , sa , and set A satisfying the same distributional assump-

tions as above.

To analyze the HJB equation (3.5), we proceed in two steps. First, we assume a certain func-

tional form (“Ansatz”) for the solution to (3.5). Then, for tractability reasons, we focus on a

certain asymptotic case.

Assumption 23. The value function can be written as

V (w, z) =−exp{−α (w + v(z)+ v̄)},

with α> 0, v ∈C 2 and v̄ ∈R.

Such a functional form is common in models of consumption-portfolio choice with CARA

investors. See, among many others, Wang [1994], Duffie et al. [2007], or Gârleanu [2009].

Further, in an asymptotic case, this assumption will be justified ex-post by an explicit solution.

Note that the function v(·) and the constant v̄ cannot be identified independently that v̄ is

only introduced for convenience.
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With Assumption 23, the various derivatives appearing in (3.5) are all proportional to the value

function itself. Namely,

Vw (w, z) = (−α)V (w, z)

Vw w (w, z) = α2V (w, z)

Vz (w, z) = (−αv ′(z)
)

V (w, z)

Vzz (w, z) =
((−αv ′(z)

)2 −αv ′′(z)
)

V (w, z).

(3.6)

This homogeneity of the problem will simplify its treatment. First, we can characterize the

optimal consumption.

Lemma 24. The optimal consumption in the HJB equation (3.5) is

c = α

γ
(w + v(z)+ v̄)− 1

γ
log

(
α

γ

)
.

It corresponds to a utility

U (c) = α

γ
V (w, z),

which is thus proportional to the value function.

Proof. The proofs are in Appendix D.

Injecting the expressions for the derivatives of the value function in (3.6) and the optimal

consumption stated in Lemma 24 into the HJB equation (3.5), and simplifying by V (w, z),

which is negative, yields

ρ =α
γ
+α

(
α

γ
(w + v(z)+ v̄)− 1

γ
log

(
α

γ

))
−α (r w + zmd )

+ 1

2

(
α2z2σ2 +

((−αv ′(z)
)2 −αv ′′(z)

)
σ2

z

)
+λEL (zq ,sz )

[
1{zq∈A}

(
inf

q̃

V
(
w − q̃Pd

(
zq , sz

)
, z + q̃

)
V (w, z)

−1

)]

+λ
[

EL (za ,sa )
[

inf
p̃

EL (za ,sa )
[

V
(
w +Q

(
za , p̃

)
p̃, z −Q

(
za , p̃

))
V (w, z)

∣∣∣∣ sa

]]
−1

]+
.

(3.7)

As this equation must hold for any wealth w and as, by Assumption 23, α> 0,

α

(
α

γ
− r

)
w = 0
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⇔ α= rγ. (3.8)

Now, injecting (3.8) into (3.7), choosing

v̄
∆= 1

rγ

(ρ
r
−1+ log(r )

)
to get rid of the constant terms, and normalizing by −α=−rγ, yields

r v(z) =zmd − 1

2

(
rγz2σ2 +

(
rγ

(
v ′(z)

)2 − v ′′(z)
)
σ2

z

)
+ λ

−rγ
EL (zq ,sz )

[
1{zq∈A}

(
inf

q̃
e−rγ(−q̃Pd (zq ,sz )+v(z+q̃)−v(z)) −1

)]
+ λ

−rγ

[
EL (za ,sa )

[
inf

p̃
EL (za ,sa )

[
e−rγ(Q(za ,p̃)p̃+v(z−Q(za ,p̃))−v(z))

∣∣∣ sa

]]
−1

]+
.

Rearranging the terms representing the trading now yields

r v(z) =zmd − 1

2

(
rγz2σ2 +

(
rγ

(
v ′(z)

)2 − v ′′(z)
)
σ2

z

)
+λEL (zq ,sz )

[
1{zq∈A} sup

q̃

1−e−rγ(−q̃Pd (zq ,sz )+v(z+q̃)−v(z))

rγ

]

+λ
[

EL (za ,sa )

[
sup

p̃
EL (za ,sa )

[
1−e−rγ(Q(za ,p̃)p̃+v(z−Q(za ,p̃))−v(z))

rγ

∣∣∣∣∣ sa

]]]+
.

(3.9)

In this last equation (3.9), the first line of the right-hand side balances the instantaneous

benefits (expected payouts) and costs (variance of payouts scaled by the risk-aversion) of

having a certain exposure z to the aggregate risk factor. The second and third line corresponds

to the benefits induced by the possibility to adjust one’s exposure by trading the stock.

Analyzing equation (3.9) is difficult because of the non-linearity of the terms related to trading,

those on the second and third line. This non-linearity itself stems from the risk-aversion

toward the non-fundamental risks.

For the sake of tractability, and following arguments in Duffie et al. [2007], Vayanos and Weill

[2008], and, to mention two particularly transparent examples, Biais [1993] and Gârleanu

[2009], we will make the investors risk-neutral with respect to the trading risks while maintain-

ing the risk-aversion with respect to the fundamental risk.

The proper way to achieve this “focused risk-aversion” is to let the risk-aversion coefficient go

to zero,

γ→ 0,
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while scaling up the fundamental aggregate risk

σ∼ 1p
γ

γ→0−→+∞.

As a result, the “quantity” of fundamental risk contained in any stock holding is maintained,

but any other type of risk-aversion vanishes. The next assumption formalizes the asymptotic

case that we will characterize explicitly.

Assumption 25. The volatility of the dividends is inversely proportional to the risk-aversion

of the investors. Namely,

σ
∆= 1p

γ
σ̄,

with σ̄> 0. Further, we assume that

v(z) = v0(z)+O (γ),

implicitly assuming that a solution v(·) to (3.9) exists for any sufficiently small value of γ.

As it turns out, focusing on the asymptotic behavior of the model significantly simplifies the

analysis. Combining the HJB equation (3.9) and Assumption 27 characterizes the asymptotic

function v0(·) as a solution to

r v0(z) =zmd − 1

2

(
rγz2σ2 − v ′′

0 (z)σ2
z

)
+λEL (zq ,sz )

[
1{zq∈A} sup

q̃

(−q̃Pd
(
zq , sz

)+ v0
(
z + q̃

)− v0(z)
)]

+λ
[

EL (za ,sa )

[
sup

p̃
EL (za ,sa ) [Q

(
za , p̃

)
p̃ + v0

(
z −Q

(
za , p̃

))− v0(z)
∣∣ sa

]]]+
.

(3.10)

We can characterize v0(·) explicitly and, following the examples of Biais [1993], Duffie et al.

[2007], Vayanos and Weill [2008], and Gârleanu [2009], we will focus on the analysis of the

asymptotic, but much more tractable, value function v0(·) instead of the general v(·). For

convenience, we will thus abuse our notations and, from now on, write v(·) for v0(·).

At this stage, we would like to state more formally what we are searching for.

The equation (3.10) relies on beliefs regarding two types of aggregate quantities. These aggre-

gate quantities are, first, the cross-sectional distribution of types µ and, second, the quoting

and purchasing policies P (·, ·) and Q(·, ·) adopted by the other investors. The combination

of these beliefs and the equation (3.5) define new, individually optimal, policies. Then, the
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aggregation of these individually optimal policy defines a certain type dynamics. Finally, a

certain stationary distribution of types results from the type dynamics.

We want to solve for a rational expectations equilibrium of the model, meaning that we want

the beliefs and the actual quantities to be consistent. We solve for such a rational expectations

equilibrium in two steps. First, we take the type distribution as exogenous and ensure the

rationality of the beliefs regarding the quoting and purchasing policies. We call such a solution,

conditional on the type distribution, a “partial equilibrium” of the model. Then, we will

ensure the rationality of the beliefs regarding the type distribution, and this will define an

“equilibrium” of the model.

The formal definition of a partial equilibrium follows.

Definition 26 (Partial Equilibrium). Let a cross-sectional distribution of types µ be given.

Then, a partial equilibrium of the model consists of a triplet of functions and a set A ⊂R2. The

three functions are

z 7→ v(z)

that describes how the value function of an investor depends on her type,

P : (z, s) 7→ P (z, s),

that describes the quote provided by an investor of type z after receiving the signal s, and

Q : (z, p) 7→V (w, z)

that describes the number of shares purchased by an investor of type z after receiving a quote

p.

The partial equilibrium quantities must be a “best-response” to themselves. Namely,

1. v(·) satisfies the HJB equation (3.9), given A, Q(·, ·), and P (·, ·);

2. the purchasing policy Q(·, ·) satisfies

Q(z, p) ∈ argmax
q̃

(−q̃Pd
(
zq , sz

)+ v
(
z + q̃

)− v(z)
)

,

meaning that it is optimal, given v(·);

3. the set A satisfies

A =
{

z : EL (za ,sa )

[
sup

p̃
EL (za ,sa ) [Q

(
za , p̃

)
p̃ + v

(
z −Q

(
za , p̃

))∣∣ sa
]]≥ v(z)

}
,
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meaning that it contains the types of the investor who are willing to issue a quote, given

Q(·, ·) and v(·);

4. the quoting policy P (·, ·) satisfies

P (z, sa) ∈ argmax
p̃

EL (za ,sa ) [Q
(
za , p̃

)
p̃ + v

(
z −Q

(
za , p̃

))∣∣ sa
]

on the set A×R, meaning that it is optimal, given A, Q(·, ·) and v(·).

The equilibrium is partial because there is no connection between, on the one hand, the

trading pattern induces by P (·, ·), Q(·, ·), and A and, on the other hand, the distribution of types

µ.

Note that, strictly speaking, we are interested in the solutions to the individual problem (ip)

and not in the solutions to the HJB equation (3.9). As these two sets need not be identical, this

calls for a verification argument.

Proposition 27. Let us assume that the transparency of the market is high enough, meaning

that

τ ∈
[p

3

2
,1

]
≈ [0.866,1] , (3.11)

and let us take as given the cross-sectional distribution of types µ and write M for its mean and

V for its variance. Then, there exists a partial equilibrium for which the value functions are

characterized by the quadratic function

v(z) = v0 + v1z + v2z2,

with 
v0 = γσ2(4λM 2((τ−3)τ2+3)−9σ2

z−4λ((τ−4)τ2+2)V )
8λ((τ−3)τ2+3)+18r

v1 = µ
r − 4γλMσ2((τ−3)τ2+3)

4λ((τ−3)τ2+3)+9r

v2 = − 9γrσ2

8λ((τ−3)τ2+3)+18r

.

The corresponding optimal purchasing policy is

Q : (z, p) 7→ p − v1

2v2
− z.
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All the agents quote a price when being asked for one, meaning that

A
(∆)=

{
z : EL (za ,sa )

[
sup

p̃
EL (za ,sa ) [Q

(
za , p̃

)
p̃ + v

(
z −Q

(
za , p̃

))∣∣ sa
]]≥ v(z)

}
= R.

And the function

P : (z, sa) 7→ v1 +2v2

(
1

3
z + 2

3
(τsa + (1−τ)M )

)
describes the optimal quoting policy.

Remark 28. Without the assumption (3.11), no quadratic partial equilibrium exists. In the

proof of Proposition 27, this assumption is critical in step (iv). If this assumption is relaxed, the

term describing the utility benefits resulting from being asked for a quote will not be quadratic

in the current type anymore, and the quadratic assumption in step (i) will not be consistent.

In order to characterize an equilibrium of the model, we still need the cross-sectional distribu-

tion of types or, as seen in Proposition 27, its two first moments. The next corollary is the first

step in this direction.

Corollary 29. The dynamics of the type z of a given agent a is

dzt = σz dBt

+

 Xr,t
(1

3 zq,t + 2
3 (τzt−+ (1−τ)M )

)
+(

1−Xr,t
) (1

3 zq,t + 2
3

(
τζr,t + (1−τ)M

))
− zt−

 dN r
t

+

 Xq,t
(
zr,t + 2

3

(
τzt−− (

τzr,t + (1−τ)M
)))

+(
1−Xq,t

) (
zr,t + 2

3

(
τzt−− (

τζq,t + (1−τ)M
)))

− zt−

 dN q
t ,

(3.12)

with the following distributional assumptions.

1. N r is a Poisson process with jump intensity λ. N c jumps when a requests a quote from

another investor.

2. zq,t ∼µ is the type of the investor from whom a requests a quote at time t .

3. Xr,t ∼ B(1,τ) is the Bernoulli random variable indicating whether the signal about a at

time t is correct (Xa,t = 1) or uninformative (Xa,t = 0).

4. ζr,t ∼µ is the uninformative signal about a.
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5. N q is a Poisson process with jump intensity λ. N q jumps when a is asked for a quote by

another investor.

6. zr,t ∼µ is the type of the investor who requested a quote from a at t .

7. Xr,t ∼ B(1,τ) is the Bernoulli random variable indicating whether a observes the current

type zr,t or the agent who requested a quote at time t (Xr,t = 1) or an uninformative signal

(Xr,t = 0).

8. ζr ∼µ is the uninformative signal about the agent who requested a quote.

Furthermore, the processes

B , N r , N q

and random variables(
zq,t , Xr,t ,ζr,t , zr,t , Xq,t ,ζq,t

)
t≥0

are all independent of each others.

3.4 Stationary Type Distribution

The calculation of the individual value functions in Section 3.3 relies on exogenous beliefs

regarding the distribution of types across the investors. However, these individual value

functions themselves induce a certain trading pattern on the OTC market, and this trading

pattern generates a certain type distribution. In this section we intend to make the beliefs

regarding the type distribution rational. We formalize the rationality of the beliefs with the

following definition.

Definition 30 (Consistent Type Distribution). A distribution of types µ is consistent if

1. the trading pattern induced by the partial equilibrium corresponding to µ generates a

stationary distribution of types µout(µ);

2. the assumed and actual distributions of types are identical, meaning that µ=µout(µ).

As it turns out, there is a unique consistent distribution of types.12

12The exact sense in which the trading pattern “generates” a stationary type distribution is clear from the proof
of the next proposition.
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Proposition 31. There exists a unique equilibrium stationary distribution of types µ. µ solves

the equation

µ̂(w) = 1

1+
1
2σ

2
z

2λ w2


τ
2 e i 2

3 (1−τ)M w π̂
(1

3 w
)

π̂
(2

3 t w
)

+1−τ
2 e i 2

3 (1−τ)M w π̂
(1

3 w
)

π̂
(2

3 t w
)

τ
2 e−i 2

3 (1−τ)M w π̂
(2

3 w
)

π̂
((

1− 2
3 t

)
w

)
+1−τ

2 e−i 2
3 (1−τ)M w π̂

(2
3 w

)
π̂ (w) π̂

(−2
3 t w

)

 , w ∈R, (3.13)

with µ̂(w) being the Fourier transform of µ. Namely, if z ∼µ, then

µ̂(w)
∆= E

[
e i w z

]
.

Furthermore, the first two moments of µ are

E[z] = S

Var[z] = 9σ2
z

4λ
(
1+τ2

) .

Proof. See Proof 62 in the appendix.

At this stage, we can already describe certain characteristics of the distribution of trades.

Corollary 32. The average transaction price is

µ

r
−γSσ2.

The variance of the transaction prices is

81γ2r 2σ4σ2
z (4τ+1)

λ
(
τ2 +1

)(
8λ

(
(τ−3)τ2 +3

)+18r
)2

and is increasing in the transparency levels whenever

λ≥ 6
(
131

p
3−101

)
20641

r ≈ 0.037r

and the transparency τ is high enough. The variance of the transaction sizes is(
10−8τ2

)
σ2

z

4λ
(
1+τ2

)
and is decreasing over the relevant range of transparency levels.
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Finally, an ordinary least-squares regression of the transaction prices against the transaction

sizes yields the constant coefficient

µ

r
−γSσ2

and the slope coefficient

9

10

2

3

(
1

3v2
(4τ+1)−2v2τ

2
)

.

The slope coefficient is increasing in τ over the relevant range when λ is not too small when

compared to r .13

Interestingly, the variance of the transaction prices is typically increasing in the transparency of

the market. It is true that a more transparent market leads to a more efficient allocation of the

stock, to smaller liquidity needs, and to more homogeneous valuations across the population

of investors. This should tend to decrease the cross-sectional variance of the transaction

prices. However, more transparency leads to predatory quotes, which increases the inventory

costs. This second effect increases the unit price of a transaction of a given size, increases the

dispersion of prices, and dominates the first effect.

3.5 Equilibrium

Putting together the results of Section 3.3 regarding the individual optimality and Section

3.4 regarding the type distribution, the characterization of an “equilibrium” of the model is

immediate. We first formally define our equilibrium concept.

Definition 33 (Equilibrium). An equilibrium of the model consists of a consistent distribution

of types µ, in the sense of Definition 30, and the corresponding partial equilibrium, in the

sense of Definition 26.

Corollary 34. There exists exactly one quadratic equilibrium.

Proof. Immediate from Proposition 27 and Proposition 30.

13The exact condition is

2
(
71+40

p
3
)
λ3 +108r 3

(
3
p

3γ2σ4 −8
)

+9λr 2
((

48
p

3−9
)
γ2σ4 −64

p
3+72

)
+120

(
3+p

3
)
λ2r > 0

and is satisfied when we let either λ→∞ or r → 0.
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We can characterize the links between the expected utility of the investors and the transparency

of the OTC market.

Corollary 35. The relationship between transparency, as measured by the parameter τ measur-

ing the quality of the signal, and expected utility, as measured by the function v(·), is ambiguous.

Namely,

lim
τ→1

∂

∂τ
v(z)


> 0 , |z −M | <

p
rλ(9r+λ)σ2

zp
6rλ

= 0 , |z −M | =
p

rλ(9r+λ)σ2
zp

6rλ

< 0 , |z −M | >
p

rλ(9r+λ)σ2
zp

6rλ

.

In particular, more transparency benefits those investors with a moderate exposure to the

aggregate risk but more opacity benefits those investors having either a sufficiently large or

sufficiently low exposure. Overall, more transparency is socially desirable in the sense that

∂τEµ(z) [v(z)] = 9γσ2σ2
zτ

4λ
(
1+τ2

)2 > 0.

The intuition behind the last proposition is that transparency increases the inventory costs.14

This happens via two different channels. On the one hand, transparency exposes any given

investor with large inventories to predatory pricing. On the other hand, as transparency

improves the allocative efficiency of the market, it becomes more difficult for an investor with

an excessive exposure to find a counterparty with large and opposite liquidity needs. This

second effect exacerbates the first one and is driven by the endogenous distribution of types.

These results imply that the effect of transparency on the value function of the investors is

ambiguous. First, on average, investors benefit from an increase of the transparency and

the resulting improvement in the allocative efficiency. In particular, transparency is welfare

improving. However, those investors with a sufficiently large (positive) or small (negative)

exposure find it increasingly costly to liquidate this exposure and would benefit from a more

opaque market. We characterize explicitly the exposure levels starting from which investors

prefer opacity to transparency. This result is in line with the heterogeneous reactions to the

introduction of TRACE, with quite negative reactions of many institutional investors. Indeed,

as our model predicts, transparency is a disadvantage for agents facing large inventory risk,

such as, e.g., certain institutional investors.

14We define the inventory costs as the reservation value of an investor who deviates from a zero risk exposure.
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3.6 Conclusion

We study a general equilibrium model in which agents share risks by trading on an OTC market.

Both the transaction size and the transaction price are bargained bilaterally, and we analyze

the equilibrium effect of asymmetric information regarding one’s counter-party liquidity needs.

We call the quality of this information the transparency of the market. We solve for both the

value functions and the moments of the endogenous distribution of types in closed-form.

Increased transparency has two main effects on the equilibrium of the model. On the one

hand, it makes the asset allocation more efficient. On the other hand, it induces agents to

adopt predatory quoting policies. These two effects both tend to increase the inventory costs,

and we show how transparency is beneficial to those agents with moderate liquidity needs

but detrimental to the rest of the population. We characterize the threshold starting from

which investors value opacity in closed-form. Overall, however, more transparency is welfare

improving. Our conclusions are in line with a number of sources documenting the mixed

effects of transparency on the liquidity of certain OTC markets.15

One natural extension of our model is to consider two classes of agents. Agents in the first class,

representing the dealers, trade both among themselves and with the agents of the second class.

Agents in the second class, representing the end-users, can only trade with the dealers. In

this setting, one can analyze the heterogeneous effects of transparency. Indeed, post-trade

transparency makes the valuations of the asset across the end-users more homogeneous,

but, for the dealers and as in the current model, it makes the information regarding one’s

counter-party inventory more accurate. Transparency may impact the entry decision of

dealers. Understanding the interaction between these two sides of transparency is critical if

one wants to evaluate the new regulatory reforms regarding the transparency of OTC markets.

15See Appendix C.
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notation parameter value
r risk-free rate 0.037
µ expected dividend of the risky asset 0
σ volatility of the dividends of the risky asset 0.285
σz volatility of the idiosyncratic exposure 1
γ absolute coefficient of risk-aversion 5

M1 net supply of the risky asset 0
λ meeting intensity on the OTC market 50

Table 3.1: Baseline parameter values for the numerical examples.

-0.5 0.5

inventory z

-0.00035

-0.00030

-0.00025

-0.00020

value function vHzL

Τ=0.87

Τ=0.93

Τ=1

Figure 3.1: Value function as a function of the inventories for three levels of transparency τ.
Note the non-monotone effect of transparency on the value function. The baseline parameters
value are in Table 3.1.
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-0.5 0.5

inventory z

-0.0004

-0.0002

0.0002

0.0004

marginal valuation v'HzL

Τ=0.87

Τ=0.93

Τ=1

Figure 3.2: Marginal valuation of the risky asset as a function of the inventories for three levels
of transparency τ. Transparency increases the dispersion of the valuations. The baseline
parameters value are in Table 3.1.
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A Proofs for Chapter 1

Asymptotic Behavior of the Equilibrium

I cannot solve for the unique stationary equilibrium of the model in closed form. The technical

difficulty preventing it are the exponential terms related to the jump risks in the HJB equation

(1.20). Closed-form expressions can, however, be obtained in the asymptotic case analyzed in

Section 1.6.1

I will also assume a relatively liquid OTC market. I would like to justify this assumption. An

investor will only bother to enter an illiquid market if she expects to amortize the costly process

of building up, and liquidating, a position over a reasonably long holding period. This intuition

is formalized in Vayanos and Wang [2007] within a search model of asset pricing, and goes

back to Amihud and Mendelson [1986] for a setting with exogenous transaction costs.

This suggests that I may assume the illiquidity level ξ= 1/Λ to be small relatively to 1/λ12 and

1/λ21, which are the average times (continuously) spent with a high or a low valuation.

Proposition 36. I assume both

det
((

ed ec

))
·det

((
e1 −e2 ec

))
> 0, (A.1)

which is the condition (1.33) in Proposition 10, and

µ2 > Sd

Θ
,

1The asymptotic analysis in Section 1.6 amounts to letting the investors become nearly risk-neutral with
respect to the jump risks but maintain their risk-aversion toward the diffusion risks. The exact definition of the
asymptotic case is in Equation (1.47) and (1.48).
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which is condition (1.31) in Section 7. Then, the price Pd bargained on the OTC market satisfies

Pd =Pd ,W −
{

1

Λ

}η0
(
r +2δµ

)+λ21

2ηΘ
(
µ2 − Sd

Θ

)


γdet
((

ed ec

))
·det

((
e1 −e2 ec

))
Σcc


+o

(
1

Λ

)
+O (γ),

(A.2)

with the Walrasian price

Pd ,W = κ (2Θ)−κ (20)

Θr
.

Also, the sensitivity

δµ
(∆)= lim

1
Λ
→0

∂
(
µ(1h)

)
∂
( 1
Λ

)
of the type distribution to the search friction was defined in Proposition 8.2

Proof 37 (Proof of Proposition 36). Under the assumption (A.1) of the statement, and recalling

Proposition 1.5, the only profitable type of trade on the OTC market is a sale by a 1Θ-investor

to a 20-investor. As a result, the HJB equations (1.20) become

r a(10) = κ(10) +λ12

(
e−rγ(a(20)−a(10))−1

−rγ

)
r a(1Θ) = κ(1Θ) +λ12

(
e−rγ(a(2Θ)−a(1Θ))−1

−rγ

)
+2Λµ(20)

χ(ηΘ,ε1Θ(a))
−rγ

r a(20) = κ(20) +λ21

(
e−rγ(a(10)−a(20))−1

−rγ

)
+2Λµ(1Θ)

χ(η0,ε20(a))
−rγ

r a(2Θ) = κ(2Θ) +λ21

(
e−rγ(a(1Θ)−a(2Θ))−1

−rγ

) (A.3)

As

χ
(
η0, x

)=−rγη0x +o(γ),

this last system of equations becomes
r a(10) = κ(10) +λ12 (a(20)−a(10)) +O (γ)

r a(1Θ) = κ(1Θ) +λ12 (a(2Θ)−a(1Θ)) +2Λµ(20)ηΘε1Θ (a)+O (γ)

r a(20) = κ(20) +λ21 (a(10)−a(20)) +2Λµ(1Θ)η0ε20 (a)+O (γ)

r a(2Θ) = κ(2Θ) +λ21 (a(1Θ)−a(2Θ)) +O (γ)

(A.4)

in the asymptotic case described by Equations (1.47) and (1.48). In this same asymptotic case,

2Recall that these results only hold under the assumption 1.31 regarding the marginal buyer.
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Equation (1.17) significantly simplifies as well and the bargained price Pd is

Pd = ηΘ (a(2Θ)−a(20))+η0 (a(1Θ)−a(10))+o(γ)

= (a(2Θ)−a(20))−η0

(
(a(2Θ)−a(20))

− (a(1Θ)−a(10))

)
+O (γ).

(A.5)

Using the expressions in (A.4) to reformulate (A.5) yields

Pd = 1

r
(κ(2Θ)−κ(20))− λ21 +2Λµ(1Θ)η0 +η0r

r +2Λ
(
ηΘµ(20)+η0µ(1Θ)

) +O (γ). (A.6)

Finally, combining the asymptotic behavior of the type distribution for a largeΛ, as described

in Proposition 8, with the last expression (A.6) yields Equation A.2 in the statement.

The terms defining the illiquidity discount in (A.2) are rather intuitive. The fist term in curly

brackets refers to the severity of the search friction. The second term in curly brackets refers to

both the respective bargaining power of the agents bargaining and to the time it would take

them to find another counter-party, should the negotiation collapse. The third term in curly

brackets measures the risk sharing benefits that the investors are bargaining on.

Proofs for Section 1.3

Proof 38 (Proof of Proposition 3). Let a be an agent with type iaθ and wealth wa . She met

another agent b. Clearly, no trade will be possible unless the holdings of b are θ̄. I denote the

two other characteristics of b by ib and wb .

There is a surplus for a and b to share if

; 6=
{

P̃ :
V

(
wa −

(
θ̄−θ)

P̃ , ia θ̄
)≥ V (wa , iaθ)

V
(
wb −

(
θ− θ̄)

P̃ , ibθ
)≥ V

(
wb , ib θ̄

) }
.

Under Assumption (2), this is equivalent to

; 6=P
∆=

{
P̃ : a(ia θ̄)−a(iaθ) ≥ P̃

(
θ̄−θ)≥ a(ib θ̄)−a(ibθ)

}
,

or to

a(i θ̄)−a(iθ)+a( jθ)−a( j θ̄) ≥ 0.

This proves the first two statements.

Now, if there actually is a surplus to share, the outcome of the bargaining is given by the Nash
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bargaining solution. Namely, a and b trade the asset at the price Pd so that

Pd = argmax
P̃∈P

(
V (wa − P̃ (θ̄−θ), ia θ̄)−V (wa , iaθ)

)ηθ ·
· (V (wb − P̃ (θ− θ̄), ibθ)−V (wb , ib θ̄)

)1−ηθ .

Unless P is reduced to a single point, in which case the solution of the optimization is trivial,

the first order condition characterize the point of maximum Pd as the solution to

ηθ
∂w

(
V (wa −Pd (θ̄−θ), ia θ̄)

)
V (wa +Pd (θ̄−θ), ia , θ̄)−V (wa , iaθ)

= (1−ηθ)
∂w

(
V (wb −Pd (θ− θ̄), ibθ)

)
V (wb −Pd (θ− θ̄), ib ,θ)−V (wb , ib θ̄)

(A.7)

which, with Assumption 2, becomes (1.17).

Proof 39 (Proof of Proposition 4). The first order necessary condition for the maximization

over the consumption rate is

γe−γc − ∂V

∂w
(w, iθ) = 0.

Recalling the Assumption 2, and solving for c yields a unique candidate c(iθ) which, by

concavity of the objective function, is a point of maximum.

A similar argument yields the optimal liquid holdings π(iθ).

Proof 40 (Proof of Proposition 5). Starting from the HJB equation (1.13), picking a type iθ,

using Proposition (3) to transform the expected value into a deterministic quantity, Proposition

4 to express the optimal consumption, Proposition 3 to express the bagained price Pd , and

normalizing by rγV (w, i ,θ), I obtain

0 =r −ρ− r log(r )+ r 2γā − rγme

+ α

rγ

(
α

γ
− r

)
w

+ r a(iθ)−κ(iθ)

+λi ī

(
e−rγ(a(ī ,θ)−a(i ,θ)) −1

)
−rγ

+2Λµ
(
ī θ̄

)[χ(
ηθ,εiθ(a)

)
−rγ

]+
.

(A.8)
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Now, I can choose the constant

ā = 1

rγ

(
−1+ ρ

r
+ log(r )+γme

)
,

which sets the first line of the right hand side to zero. Also, as the equation above must hold

for any value of the liquid holdings w ,

α

(
r − α

γ

)
= 0.

Under Assumption 2, this requires α= rγ and the second line of the right hand side equals

zero. Taking these two observations into account yields the system (1.20).

It remains to show that this equation admits exactly one solution. I split my argument into

four steps.

Step 1 I first rearrange the four equations described in (1.20) into two. Namely, defining the

variables

∆Θ
∆= a(1Θ)−a(2Θ) (A.9)

and

∆0
∆= a(20)−a(10), (A.10)

and taking the corresponding differences in the HJB equations (1.20) ensures that

0 =r∆0 −κ(20)+κ(10)−λ21
erγ∆0 −1

−rγ
+λ12

e−rγ∆0 −1

−rγ

−2Λ

(
µ(1Θ)

[
χ

(
η0,−∆0 −∆Θ

)
−rγ

]+
−µ(2Θ)

[
χ

(
η0,∆0 +∆Θ

)
−rγ

]+)
∆=F0 (∆0,∆Θ)

(A.11)

and

0 =r∆Θ−κ(1Θ)+κ(2Θ)−λ12
erγ∆Θ −1

−rγ
+λ21

e−rγ∆Θ −1

−rγ

−2Λ

(
µ(20)

[
χ

(
ηΘ,−∆0 −∆Θ

)
−rγ

]+
−µ(10)

[
χ

(
ηΘ,∆0 +∆Θ

)
−rγ

]+)
∆=FΘ (∆0,∆Θ) .

(A.12)
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Inspection ensures that, for any ∆Θ, the function F0 (·,∆Θ) is strictly increasing with a range

equal to the entire real line. It also ensures that, for any given ∆0, the function F0 (∆0, ·) is

strictly increasing with the bounded range

r∆0 −κ(20)+κ(10)−λ21
erγ∆0 −1

−rγ
+λ12

e−rγ∆0 −1

−rγ
+ 2Λ

rγ

[−µ(1Θ),µ(2Θ)
]

. (A.13)

Similar properties hold for FΘ.

Step 2 Given these properties of F0 and FΘ, I can define the functions

Φ0,ΦΘ :R→R

by requiring that, for any x ∈R,

0 = F0 (Φ0(x), x) = FΘ (x,ΦΘ(x)) . (A.14)

The monotonicity properties also ensure that bothΦ0 andΦΘ are decreasing. I show two more

properties of these functions.

First, these functions decrease relatively slowly. Namely, for any choice of x ∈R and y ∈R>0, it

follows from (A.14) that

F0
(
Φ0(x)− y, x + y

)< F0 (Φ0(x), x) = 0 = F0
(
Φ0(x + y), x + y

)
,

meaning that

y +Φ0(x + y)−Φ0(x) > 0.

As a result, the function

x 7→ x +Φ0(x) (A.15)

is increasing and, by a similar argument, so is

x 7→ x +ΦΘ(x).

Second, their range is compact. Let me first consider ΦΘ. Recalling the bounded range

described by (A.13), I may write, for any pair (∆0,∆Θ) ∈R2,

F L
0 (∆0) ≤ F0 (∆0,∆Θ) ≤ FU

0 (∆0) ,
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where I defined

F L
0 (x)

∆= r x −κ(20)+κ(10)−λ21
erγx −1

−rγ
+λ12

e−rγx −1

−rγx
− 2Λ

rγ
µ(1Θ)

and

FU
0 (x)

∆= r x −κ(20)+κ(10)−λ21
erγx −1

−rγ
+λ12

e−rγx −1

−rγx
+ 2Λ

rγ
µ(2Θ)

Inspection now ensures that, for bU ,0 large enough, F L
0

(
bU ,0

) ≥ 0, and that for bL,0 small

enough, FU
0

(
bL,0

)≤ 0. But then, for any ∆Θ,

F0(bL,0,∆Θ) ≤ FU
0 (bL,0) ≤ 0 ≤ F L

0 (bU ,0) ≤ F0(bU ,0,∆0).

Keeping the monotonicity and continuity of F0 in mind, this implies thatΦ0 (∆Θ) ∈ [
bL,0,bU ,0

]
,

and thus that

Φ0 (R) ⊂ [
bL,0,bU ,0

]
.

A similar argument formulated with FΘ would yield two other constants bL,Θ and bU ,Θ so that

ΦΘ (R) ⊂ [
bL,Θ,bU ,Θ

]
.

In particular, if I define

Ω
∆= [

bL,Θ∧bL,0,bU ,0 ∨bU ,0
]

,

then

Φ (Ω)
∆= (Φ0,ΦΘ) (Ω) ⊂Ω×Ω.

Step 3 I now show thatΦ is a contraction and, as a result, admits a unique fixed point. First,

a direct verification shows the continuity ofΦ0 andΦΘ.

Second, if I choose x ∈Ω so that

Φ0 (x)+x 6= 0, (A.16)

then, an application of the Implicit Function Theorem based on the relation (A.14) ensures
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thatΦl is differentiable at x, with derivative given by

Φ′
0 (x) =−

∂F0
∂∆0

(Φ0 (x) , x)

∂F0
∂∆Θ

(Φ0 (x) , x)

=−
2Λ

(
1{−Φ0(x)−x>0}µ(1Θ)(−1)∂χ∂ε

(
η20,−Φ0 (x)−x

)
−1{Φ0(x)+x>0}µ(2Θ)∂χ∂ε

(
η10,Φ0 (x)+x

) )

r +λ12erγx +λ21e−rγx +2Λ

(
1{−Φ0(x)−x>0}µ(1hΘ)(−1)∂χ∂ε

(
η20,−Φ0 (x)−x

)
−1{Φ0(x)+x>0}µ(2Θ)∂χ∂ε

(
η10,Φ0 (x)+x

) ) .

Now, one checks that the numerator is positive, bounded on Ω, and also appears in the

denominator. Further, the second part of the denominator,

r +λ12erγx +λ21e−rγx ,

is also positive, and bounded onΩ. Then, there exists a constant C ∈ (0,1), independent of the

choice of x, and for which∣∣Φ′
0(x)

∣∣<C .

onΩ.

Finally, remembering the monotonicity of the function in (A.15), there is at most one point in

Ωwhere (A.16) does not hold and where, as a result,Φ0 is not differentiable.

Summing up, the restriction ofΦ0 toΩmaps a compact into itself, is continuous, is differen-

tiable everywhere but possibly at one point, and has a derivative whose absolute value that is

bounded strictly below one.

This argument can be adapted forΦΘ, and classical contraction argument then ensures thatΦ

admits a unique fixed point
(
∆∗

0 ,∆∗
Θ

)
inΩ. Finally, as the range ofΦ is already contained inΩ,

this is the unique fixed point over R2.

Step 4 Finally, given the fixed point ofΦ, the solution β to the HJB equations (1.20) can be

recovered. For example,

a(1Θ) = 1

r

(
κ(1h)+λ12

e−rγ∆∗
h −1

−rγ
+2Λµ(20)

[
χ

(
ηΘ,−∆∗

0 −∆∗
Θ

)]−)
. (A.17)

In particular, there is exactly one solution to the system of HJB equations (1.20).
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Proof 41 (Proof of Proposition 7). The proposition and its proof are in Duffie et al. [2005]. I

only give a partial sketch to introduce some notation.

There are three linear relations linking the components of a stationary distribution µ. They

follow from the stationary distribution of endowment correlation types and from the market

clearing condition (1.28), and are
µ(10)+µ(1Θ) =µ1

µ(20)+µ(2Θ) =µ2

µ(1Θ)+µ(2Θ) = Sd
Θ

. (A.18)

One can then use these equations to express one of the flow conditions (1.25) as an equation

in, say, µ(20) only. This yields the quadratic equation

0 =µ(20)2 +b

(
1

Λ

)
µ(20)+ c

(
1

Λ

)
∆=Q

(
µ(2l ),

1

Λ

)
, (A.19)

where

b

(
1

Λ

)
∆=Sd

∆θ
−µ2 + 1

Λ

λ12 +λ21

2
,

c

(
1

Λ

)
∆=− 1

Λ

λ12

2

(
1− Sd

Θ

)
.

(A.20)

Solving this equation already characterize a unique candidate.

I will use the following results when proving Corollary 12 and Proposition 8. They follow from

the characterization (A.19).

Lemma 42. The sensitivity of the stationary cross-sectional distribution of types to the illiquidity

level satisfies

∂

∂ 1
Λ

µ(1Θ) = ∂

∂ 1
Λ

µ(20) =− ∂

∂ 1
Λ

µ(10) =− ∂

∂ 1
Λ

µ(2Θ) =
−µ(20)λ12+λ21

2 + λ12
2

(
1− Sd

Θ

)
µ(1Θ)+µ(20)+ 1

Λ
λ12+λ21

2

, (A.21)

which is positive. Also,

∂

∂ 1
Λ

(
λµ(1Θ)µ(20)

)=− 1( 1
Λ

)2

µ(20)µ(1Θ) 1
2Λ (λ12 +λ21)

µ(2l )+µ(1h)+ 1
λ
λ12+λ21

2

(A.22)
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and is negative. Finally, for iθ = 1Θ,20,

∂

∂ 1
Λ

(
λµ(iθ)

)
and is negative as well.

Proof 43 (Proof of Lemma 42). For the first statement, the sensitivity of µ(20) on the illiquidity

level follows from an application of the Implicit Function Theorem. The relation between the

various sensitivities then follows from (A.18).

Now, recalling Equations (1.25) and (1.28), I deduce from (A.21) that

∂

∂ 1
Λ

µ(1Θ) = ∂

∂ 1
Λ

µ(20) = λµ(1Θ)µ(20)

µ(1Θ)+µ(20)+ 1
Λ
λ12+λ21

2

,

which is positive. A direct calculation then yields (A.22). Finally the last sensitivity follows

from the elementary observation that, if the product of two positive functions is increasing,

and if the first term in the product is decreasing, then the second one must be increasing.

Proof 44 (Proof of Proposition 8). From the proof of Proposition 7,

µ

(
20,

1

Λ

)
= 1

2

−b

(
1

Λ

)
+

√(
b

(
1

Λ

))2

−4c

(
1

Λ

) .

Now, as

lim
1
Λ
→0

b

(
1

Λ

)
= Sd

Θ
−µ2,

which I assumed to be negative, and

lim
1
Λ
→0

c

(
1

Λ

)
= 0,

it follows that

lim
1
Λ
→0
µ

(
20,

1

Λ

)
=µ2 − Sd

Θ
.

Recalling the linear relationships (A.18), this yields the asymptotic distribution.
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Now, using the previous lemma yields

∂ 1
Λ
µ(20) =

−µ(20)λ12+λ21
2 + λ12

2

(
1− Sd

Θ

)
2µ(20)+ Sd

Θ −µ2 + 1
Λ
λ12+λ21

2

1
Λ
→0−→ λ21

2

Sd
Θ

µ2 − Sd
Θ

,

which concludes.

Proof 45 (Proof of Proposition 10). Keeping Proposition 4 in mind, the equilibrium condition

for the centralized market becomes

Sc = Eµ(iθ) [π(iθ)] = 1

σ2
c

(
1

rγ
(mc − r Pc )−Eµ(iθ) [Σi c ]−Σcd Eµ(iθ) [θ]

)
.

Now, realizing that

Eµ(iθ) [Σi c ] =µ1Σ1c +µ2Σ2c
(∆)= Σηc

is independent of the trading on the OTC market, and that, thanks to the market clearing

condition (1.28), so is

Eµ(iθ) [θ] = Sd ,

I can already solve for the equilibrium price, which yields (1.34). Then, combining this last

result and the characterization (1.18) of the optimal liquid holdings yields the expression (1.35)

in the statement.

I now turn to the OTC market. The existence and uniqueness follows from two elementary

observations. First, the value function of a, say, 1h-agents is only impacted by µ via µ(20) and

only as long as ε1Θ(a) > 0. Otherwise, 1h-agents have no intention to trade and, as a result, no

interest in knowing how often a counter-party may be met. In mathematical terms, this reads

µ(a,20)

[
χ(η0,ε1Θ(a))

−rγ

]+
=µ(a,20)1{ε1Θ(a)>0}

χ
(
η0,ε1Θ(a)

)
−rγ

=µ1Θ→20(20)1{ε1Θ(a)>0}
χ

(
η0,ε1Θ(a)

)
−rγ

=µ1Θ→20(20)

[
χ

(
η0,ε1Θ(a)

)
−rγ

]+
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In particular, this means that I can choose

µ̂=


µ2Θ→10(10)

µ1Θ→20(1Θ)

µ1Θ→20(20)

µ2Θ→10(2Θ)


as the “density" in (1.20). Note that this vector does not depend on a but does not define a

density any more.

The second observation is that the proof of Proposition 5 remains valid when the components

of µ are only positive numbers, and do not necessarily sum up to one. As a result, there is

exactly one solution to the HJB equations defining an equilibrium, which shows the uniqueness

and existence of an equilibrium.

I must still characterize the ordering of the valuations of the illiquid asset d or, equiva-

lently, characterize the trading pattern on the OTC market. To do so I first characterize the

ordering when the OTC market becomes arbitrarily liquid, and then show that this ordering is

maintained at any illiquidity level. The actual argument is articulated around three claims.

Claim 1 I first show that an equilibrium a of the model can be bounded by constants that

are independent of the illiquidity level.

Proof of Claim 1. Let {Λn}n≥0 be a sequence of intensities be given, and let {an}n≥0 be the

corresponding sequence of equilibria. Let me assume, for the sake of contradiction, that

there is an agent type iθ for which the sequence {an(iθ)}n≥0 is unbounded. I first assume it is

unbounded below, meaning that, maybe up to taking a subsequence,

lim
n→∞an(iθ) =−∞, (A.23)

Recalling the HJB equations (1.20) and the first part of this proof,

−λi ī
e−rγ(an (īθ)−an (iθ)) −1

−rγ
=−r an(iθ)+κ(iθ)+2Λnµ̂

(
Λn , ī θ̄

)[χ(
ηθ,εiθ(a)

)
rγ

]+
. (A.24)

But, recalling (A.23), the left hand side of (A.24) is bounded below by a sequence that grows

arbitrarily. As a result,

lim
n→∞an(iθ)−an(īθ) =+∞. (A.25)
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and, recalling (A.23) one more time,

lim
n→∞an(īθ) =−∞. (A.26)

Now, if (A.25) follows from (A.23), from (A.26) I can conclude that

lim
n→∞an(īθ)−an(iθ) =+∞. (A.27)

In particular, both (A.25) and (A.27) follow from (A.23), which is impossible. There is thus no

sequence of equilibria that is unbounded below.

It remains to see whether a sequence of equilibria can be unbounded above. Let me assume

that, maybe choosing a subsequence,

lim
n→∞an(1Θ) =+∞. (A.28)

Choosing the type 1Θ is without loss of generality. Before pursuing the argument I note that,

assuming an agent of type iθ does not trade in equilibrium, it follows from (1.20) and the first

part of the proof that

0 =r an(iθ)−κ(iθ)−λi ī
e−rγ(an (īθ)−an (iθ)) −1

−rγ
−2Λnµ̂(λ, ī θ̄)

[
χ

(
ηθ,εiθ(a)

)
−rγ

]+
=r an(iθ)−κ(iθ)−λi ī

e−rγ(an (iθ)−an (īθ)) −1

−rγ

≥r an(iθ)−κ(iθ)−λi ī
1

rγ
.

In other words, I have an a priori upper bound on an(iθ). Namely,

1

r

(
κ(iθ)+ λi ī

rγ

)
≥ an(iθ). (A.29)

Now, two further cases must be distinguished, depending on whether 1Θ-agents are willing to

trade or not. Maybe choosing a further subsequence, I assume that 1Θ-agents never trade. In

this case, combining (A.29) and (A.28) yields

1

r

(
κ(1Θ)+ λ12

rγ

)
≥ lim

n→∞an(1Θ) =+∞,

which is a contradiction. The only possibility left is thus for the agents with type 1Θ are willing

to trade. I can thus assume that, for any n ≥ 0,

an(10)−an(1Θ)−an(20)+an(2Θ) ≥ 0.
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Using (A.29) for the two types of agent that do not trade, meaning 10 and 2Θ, then yields

1

r

(
κ(10)+κ(2Θ)+ λ12

rγ
+ λ21

rγ

)
≥ an(1Θ)+an(20).

From this last inequality and (A.28) I deduce that

lim
n→∞an(20) =−∞,

which will, by the first part of this proof, lead to a contradiction.

To sum up, there are no circumstances under which an unbounded sequence of equilibria can

be found.

This first claim is needed when proving the second one.

Claim 2 For a sufficiently large meeting intensity Λ, the corresponding equilibrium a(Λ)

satisfies

ε1Θ(a) > 0

exactly when S > 0, with S defined in (1.24).

Proof of Claim 2. Let me choose a sequence {Λn}n≥0 of meeting intensities so that

lim
n→∞Λn =+∞.

By Claim 1, there exists two constants L <U so that

∀n : an ∈ [L,U ]4 (A.30)

I can thus choose a convergent subsequence, and call the limit a∞. Maybe choosing a further

subsequence, I assume that

∀n : ε1Θ(an)
(∆)= an(2Θ)−an(20)+an(10)−an(1Θ) ≥ 0. (A.31)

In other words, all along the sequence of intensities, and in the limit, agents with endowment

correlations type 2 have the high valuation of the illiquid asset.
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Under this assumption the HJB equations defining an become

r an(10) = κ(10) +λ12
e−rγ(an (20)−an (10))−1

−rγ

r an(1Θ) = κ(1Θ) +λ12
e−rγ(an (2Θ)−an (1Θ))−1

−rγ +2Λnµ̂ (Λn ,20)
χ(ηΘ,ε1Θ(a))

−rγ

r an(20) = κ(20) +λ21
e−rγ(an (10)−an (20))−1

−rγ +2Λnµ̂ (Λn ,1Θ)
χ(η0,ε20(a))

−rγ

r an(2Θ) = κ(2Θ) +λ21
e−rγ(an (1Θ)−an (2Θ))−1

−rγ

. (A.32)

At this stage, I will consider the asymptotic behavior of the stationary type distribution, which

requires to distinguish two cases.

I first assume

µ2 − Sd

∆θ
> 0, (A.33)

meaning that the marginal buyer of the illiquid asset has a high valuation. In this case, it is

known from Lemma 8 that

lim
n→∞ µ̂(Λn ,20) =µ2 − Sd

Θ
> 0.

As a result,

lim
n→∞Λnµ̂(Λn ,20) =∞. (A.34)

Now, as stated in (A.30) shows that the equilibria are bounded. Hence, (A.32) is only compatible

with (A.34) if

lim
n→∞χ

(
ηΘ,ε1Θ(a)

)= 0.

Recalling the definition of “χ" in (1.23), this is equivalent to

a∞(10)−a∞(1Θ) = a∞(20)−a∞(2Θ). (A.35)

But then, as Lemma 8 ensures that

lim
n→∞Λnµ̂(Λn ,1Θ) = λ12

2

Sd
Θ

µ2 − Sd
Θ
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letting n go to +∞ in (A.32) yields

r a∞(10) = κ(10) +λ12
e−rγ(a∞(20)−a∞(10))−1

−rγ

r a∞(1Θ) = κ(1Θ) +λ12
e−rγ(a∞(2Θ)−a∞(1Θ))−1

−rγ

+ limn→∞ 2Λnµ̂ (Λn ,20)
χ(ηΘ,ε1Θ(a))

−rγ

r a∞(20) = κ(20) +λ21
e−rγ(a∞(10)−a∞(20))−1

−rγ

r a∞(2Θ) = κ(2Θ) +λ21
e−rγ(a∞(1Θ)−a∞(2Θ))−1

−rγ

. (A.36)

Now, subtracting the second and third equations from the sum of the first and fourth ones in

(A.36), and then repeatedly using (A.35), yields

κ(10)−κ(1Θ)+κ(2Θ)−κ(20) = lim
n→∞2Λnµ̂ (Λn ,20)

χ
(
ηΘ,ε1Θ(a)

)
−rγ

. (A.37)

I draw two conclusions from this last equality. First, combining it with (A.38) yields
r a∞(10) = κ(10) +λ12

e−rγ(a∞(20)−a∞(10))−1
−rγ

r a∞(1Θ) = κ(10)+κ(2Θ)−κ(20) +λ12
e−rγ(a∞(2Θ)−a∞(1Θ))−1

−rγ

r a∞(20) = κ(20) +λ21
e−rγ(a∞(10)−a∞(20))−1

−rγ

r a∞(2Θ) = κ(2Θ) +λ21
e−rγ(a∞(1Θ)−a∞(2Θ))−1

−rγ

. (A.38)

This system defines a contraction, as Proposition 53 below formally shows, which ensures the

uniqueness of the asymptotic equilibrium β∞.

Second, (A.37) is only compatible with the assumption (A.31) as long as

S
(∆)= κ(10)−κ(1Θ)−κ(20)+κ(2Θ) ≥ 0. (A.39)

The case of

Sd

Θ
>µ2

is handled similarly.

Assuming the reverse inequality in (A.31) would also give a unique candidate for a∞, but this

time require that (A.39) also holds with a reverse inequality.

Summing up, if (A.39) holds, then the sequence of equilibria converges and, for n large enough,

ε1Θ(an) > 0. Otherwise, the sequence converges as well but, for n large enough, ε2Θ(an) < 0.

I have now characterized which trades are implemented when the meeting intensity is suf-

ficiently large. The last step is to show that the trading pattern cannot be reverted by an
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increasing illiquidity level.

Claim 3 The surplus to be shared in bilateral trades is differentiable and decreasing in the

meeting intensity. In other words, if εiθ (a(Λ)) > 0,

∂

∂Λ
εiθ (a(Λ)) < 0.

In particular, the derivative exists.

Proof of Claim 3. Without loss of generality, I assume

ε1Θ(a)
(∆)= a(10)−a(1Θ)−a(20)+a(2Θ)

(∆)= −∆Θ−∆0 > 0, (A.40)

meaning that the 2-agents have the high valuation. From the proof of Proposition 5, I know

that for any givenΛ, the pair ∆
∆= (∆Θ,∆0) is the unique solution to the system

0 = F (∆;Λ)
(∆)⇔

{
0 = FΘ (∆Θ,∆0;Λ)

0 = F0 (∆0,∆Θ;Λ)
,

where the function F :R3 →R2 is implicitly defined in the last equation. Now, under the above

assumption regarding the high valuation agents, I can write

det(D∆F (∆,Λ))

=det


r +λ12erγ∆h +λ21e−rγ∆h

+2Λµ(20)
∂χ

∂ε (η1h ,−∆l−∆h)
−rγ

2Λµ(20) ∂χ
∂ε (η1h ,−∆l−∆h)
−rγ

2Λµ(1Θ) ∂χ
∂ε (η2l ,−∆l−∆h)
−rγ

r +λ21erγ∆l +λ12e−rγ∆l

+2Λµ(1Θ) ∂χ
∂ε (η2l ,−∆l−∆h)
−rγ


=(

r +λ12erγ∆h +λ21e−rγ∆h
)(

r +λ21erγ∆l +λ12e−rγ∆l
)

+ (
r +λ12erγ∆h +λ21e−rγ∆h

) 2Λµ(1Θ)∂χ∂ε
(
η2l ,−∆l −∆h

)
−rγ

+ (
r +λ21erγ∆l +λ12e−rγ∆l

) 2Λµ(20)∂χ∂ε
(
η1h ,−∆l −∆h

)
−rγ

.

(A.41)

Recalling from the definition (1.23) that χ is decreasing in its second argument, this last

quantity is positive, which justifies an application of the Implicit Function Theorem. This
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ensures that∆ is, locally, a differentiable function∆(λ) of the meeting intensity, with derivative

∂λ∆(λ) =− (D∆F (∆,λ))−1 DλF (∆,λ)

= −1

det(D∆F )

(
∂F0
∂∆0

−∂FΘ
∂∆0

− ∂F0
∂∆Θ

∂FΘ
∂∆Θ

)(
∂FΘ
∂λ
∂F0
∂λ

)
.

But then,

∂

∂Λ
(∆0 +∆Θ)

= −1

det(D∆F )

((
∂F0
∂∆0

− ∂F0
∂∆Θ

)
∂FΘ
∂λ +

(
∂FΘ
∂∆Θ

− ∂FΘ
∂∆0

)
∂FΘ
∂Λ

)
= −1

det(D∆F (∆,Λ))

 (
r +λ21erγ∆0 +λ12e−rγ∆0

) χ(ηΘ,−∆0−∆Θ)
−rγ 2∂Λ

(
Λµ(Λ,2l )

)
+(

r +λ12erγ∆Θ +λ21e−rγ∆Θ
) χ(η2l ,−∆0−∆Θ)

−rγ 2∂Λ
(
Λµ(Λ,1Θ)

)
 .

With (A.40), both χ
(
ηΘ,−∆0 −∆Θ

)
and χ

(
η0,−∆0 −∆Θ

)
are negative, As a result,

∂Λ (∆Θ(Λ)+∆0(Λ)) > 0

or, equivalently,

∂Λ (−∆Θ(Λ)−∆0(Λ)) < 0

which proves the claim.

I can finally conclude the proof of Proposition 10. Indeed, assuming that S > 0, Claim 2

ensures that, if the meeting intensityΛ is larger than a certain threshold Λ̄, then, ε1Θ (a(Λ)) > 0,

meaning that 2-agents have the high valuation. But then, Claim 3 ensures that decreasingΛ

increases ε1Θ (a(Λ)). In particular, 2-agents still have the high valuation for any value of the

meeting intensity. The case where S < 0 is similar.

Proof 46 (Proof of Proposition 12). Without loss of generality, I assume that 2-agents have the

high valuation of the illiquid asset.

Regarding the OTC market, as the transaction size is fixed, the trading volume is proportional

to

2Λµ(1Θ)µ(20),

meaning to the meeting intensity between 1Θ and 20 agents. From Lemma 42 this quantity is

increasing in the meeting intensity.
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Recalling the expressions (1.35) for the liquid holdings in equilibrium, the volume exchanged

on the centralized market per unit of time is thus

Vol =1

2



λ12µ(10) |π(10)−π(20)|
+λ12µ(1Θ) |π(1Θ)−π(2Θ)|

+2Λµ(1Θ)µ(20) |π(1Θ)−π(10)|
+2Λµ(1Θ)µ(20) |π(20)−π(2Θ)|

+λ21µ(20) |π(20)−π(10)|
+λ21µ(2Θ) |π(2Θ)−π(1Θ)|


= 1

2Σcc

{(
λ12µ1 +λ21µ2

) |Σ1c −Σ2c |+4Λµ(1Θ)µ(20) |Σcd |Θ
}

= 1

Σcc

{
λ12λ21

λ12 +λ21
|Σ1c −Σ2c |+2Λµ(1Θ)µ(20) |Σcd |Θ

}
. (A.42)

Lemma 42 shows that the trading volume in increasing inΛ.

Proof 47 (Proof of Proposition 13). To obtain a model without OTC market, we can setΘ= 0.

In this case Equation (A.42) in the last proof immediately shows that the trading volume in c

drops.

Further, letting the meeting intensity Λ grow arbitrarily in Equation (A.42), and recalling

Proposition 8, I calculate the asymptotic level of trading in c as

lim
Λ→∞

Vol(Λ) = 1

Σcc

{
λ12λ21

λ12 +λ21
|Σ1c −Σ2c |+2λ21Sd |Σcd |

}
.

Now, in a Walrasian setting, the market for d can only clear if the investors with a high valuation

randomize their decision to buy the asset d . If the inequality (1.36) holds, inspection shows

that the trading volume on the market for c in a Walrasian setting is

VolW = 1

2


µ1λ12

µ2− Sd
Θ

µ2

∣∣µ(20)−π(10)
∣∣

+µ1λ12

Sd
Θ

µ2

∣∣µ(2Θ)−π(10)
∣∣

+Sd
Θ λ21 |π(10)−π(2Θ)|

+
(
µ2 − Sd

Θ

)
λ21 |π(10)−π(20)|


=

(
λ12λ21
λ12+λ21

∣∣µ(20)−π(10)
∣∣

+Sd
Θ λ21

(∣∣µ(2Θ)−π(10)
∣∣− ∣∣µ(20)−π(10)

∣∣)
)

.

The triangular inequality ensures that∣∣µ(2Θ)−π(10)
∣∣− ∣∣µ(20)−π(10)

∣∣≤ ∣∣µ(2Θ)−π(20)
∣∣
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and, as a result, that

VolW ≤ lim
Λ→∞

Vol(Λ).

Inspection finally shows that Inequality (1.36) defines the cases for which the triangular

inequality is strict.

Proof 48 (Proof of Proposition 16). The optimization for the optimal design of the liquid asset

is

max
(ac ,bc )

f (ac ,bc )
(∆)= max

(ac ,bc )
{|w1ac +w2bc |+ |w3ac +w4bc |} (A.43)

under the conditions

‖(ac ,bc )‖2 = 1, (A.44)

det

((
ad ac

bd bc

))
·det

((
a1 −a2 αc

b1 −b2 βc

))
> 0. (A.45)

I characterize the solution to this problem by maximizing f under the constraint (A.44) and

making sure that the constraint (A.45) holds ex post.

A solution to the maximization of f under (A.44) exists because f is continuous and the

optimization domain is compact.

The objective function f is piecewise linear and I define

A
∆= {

(x, y) ∈R2 : w1x +w2 y ≥ 0
}

and

B
∆= {

(x, y) ∈R2 : w3x +w4 y ≥ 0
}

to describe this piecewise structure. Clearly, the optimal risk-profile (ac ,bc ) belongs either to

D1
∆= (A∩B c )∪(Ac ∩B) or to D2

∆= (A∩B)∪(Ac ∩B c ). In the first case, the method of Lagrange

multipliers characterizes the optimal risk profile as{
∇(ac ,bc ) f

∣∣
D1

(ac ,bc ) = L∇(ac ,bc )
(‖(ac ,bc )‖2

)
‖(ac ,bc )‖2 = 1

,

with L ∈ R being the Lagrange multiplier. Solving this system for (ac ,bc ) yields the unique
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candidate(
ac

ad

)
=±1

ν

(
w1 −w3

w2 −w4

)
, (A.46)

with the constant

ν
∆=

√
(w1 −w3)2 + (w2 −w4)2

ensuring the normalization Σcc = 1.3 I must still make two checks to ensure the validity of this

candidate as a solution to the original problem. First, does the candidate satisfy the constraint

(A.45)? Plugging (A.46) into (A.45) yields

2ΘΛλ12λ21µ(20)µ(1Θ) ((b2 −b1) ad + (a1 −a2)bd ) 2

ν2
(
λ1,2 +λ2,1

) > 0

and the consistency constraint is necessarily satisfied. Second, does the candidate actually

belongs to D1? A vector
(
ãc , b̃c

)
belongs to D1 exactly when

(w1ac +w2bc ) (w3ac +w4bc ) < 0.

For the choice (ac ,bc ) = (
ãc , b̃c

)
, this inequality becomes the assumption (1.55) in the state-

ment, and is thus satisfied.

Finally, we can consider the second case (ac ,bc ) ∈D2 and follow the same steps as in the first

case. In this second case, however, the unique candidate does not satisfy the condition (A.45)

and there is no solution to the original problem (A.43).

Lemma 49. The equilibrium price Pc of the liquid asset and the corresponding holdings

{π(iθ;m2, t }iθ are uniquely defined in the asymptotic case characterized by Equation (1.47)

and Equation (1.48). In case of an aggregate shock from the state (m2, t) to m̃2,0, the price Pc

jumps up when

(Σ2c −Σ1c )
(
m̃2 −µ2(m2, t )

)< 0

and down when the other inequality holds. Finally, the “κ(iθ;m2, t )” defined in (1.45) satisfy

S
∆= κ(10;m2, t )−κ(1Θ;m2, t )−κ(20;m2, t )+κ(2Θ;m2, t )

= rγΘ

Σcc
det

((
ed ec

))
·det

((
e1 −e2 ec

))
+o(γ)

for any state (m2, t ) of the economy.

3The ± follows from the symmetry of the optimization, as discussed in the main text.
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Proof. I start from the optimization over the liquid holdings π̃ in the HJB equation 1.44. The

first-order condition for this optimization characterizes the optimal holdings π(iθ;m2, t ) as

the unique solution to the equation

0 = Ṗc (m2, t )+mc − r Pc (m2, t )− rγ
(
Σi c Σcd Σcc

) 1

θ

π(iθ;m2, t )



+λa EM(m̃2)


(Pc (m̃2,0)−Pc (m2, t )) ·

·


δ(i ;m2, t ;m̃2)·
·e−rγ(a(īθ;m̃2,0)+π(iθ;m2,t )(Pc (m̃2,0)−Pc (m2,t ))−a(iθ;m2,t ))

+ (1−δ(i ;m2, t ;m̃2)) ·
·e−rγ(a(iθ;m̃2,0)+π(iθ;m2,t )(Pc (m̃2,0)−Pc (m2,t ))−a(iθ;m2,t ))




(A.47)

In the asymptotic case of a small risk-aversion to the jump risks, as characterized by the

equations (1.47) and (1.48), this first-order condition becomes

0 = Ṗc (m2, t )+mc − r Pc (m2, t )− rγ
(
Σi c Σcd Σcc

) 1

θ

π(iθ;m2, t )


+λa

(
EM(m̃2) [Pc (m̃2,0)]−Pc (m2, t )

)+O (γ).

(A.48)

Equation (A.48) can be solved for π(iθ;m2, t ) in closed-form. A direct calculation then shows

S
∆= κ(10;m2, t )−κ(1Θ;m2, t )−κ(20;m2, t )+κ(2Θ;m2, t )

= rγΘ

Σcc
det

((
ed ec

))
·det

((
e1 −e2 ec

))
+O (γ)

for any state (m2, t). In particular, even if the “κ” in the dynamic setting are different from

their counterparts in the stationary setting, they generate the same flow of surplus.4

Alternatively, aggregating (A.48) across the population and recalling the market-clearing con-

dition

Eµ(iθ;m2,t ) [π(iθ;m2, t )] = Sc

that holds for any state (m2, t ), yields the ODE

Ṗc (m2, t )− (r +λa)Pc (m2, t )

=−(
mc − rγ

(
Σηc (m2, t )+ΘΣcd +ScΣcc

)+λa EM(m̃2) [Pc (m̃2,0)]
)+O (γ).

(A.49)

4The “κ”s are defined in Equation (1.21) in the stationary setting and in Equation (1.45) in the dynamic setting.
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for the price of the liquid asset. Deriving

Σηc (m2, t ) =Σ1c +
(
µ2 +

(
m2 −µ2

)
e−(λ12+λ21)t

)
(Σ2c −Σ1c )

from the type distribution (1.38) and taking as given the value

k0
∆=λa EM(m̃2) [Pc (m̃2,0)] ,

I can solve the ODE (A.49) in closed form under the no-bubble condition

lim
T→∞

e−r T Pc (m2, t ) = 0.

The solution is

Pc (ha , t ) = k0 +k1

r +λa
+ k2(m2)

r +λa +λ12 +λ21
e−(λ12+λ21)t , (A.50)

with the constants

k1
∆= mc − rγ

(
Σ1c +µ2 (Σ2c −Σ1c )+ΘΣcd +ScΣcc

)
,

k2(m2)
∆= − rγ

(
m2 −µ2

)
(Σ2c −Σ1c ) .

I must still find the constant k0. This is done by solving the linear equation

k0 = λa EM(m̃2) [Pc (m̃2,0)]

⇔ k0 = λa

(
k0+k1
r+λa

− rγEM(m̃2)[m̃2]−µ2

r+λa+λ12+λ21
(Σ2c −Σ1c )

)
for k0.

Finally, I characterize how the price Pc of the liquid asset reacts to an aggregate shock that

moves the economy from the state (µ2, t) to the state (m̃2,0). Namely a direct calculation

based on Equation (A.50) shows how Pc jumps up when

(Σ2c −Σ1c )
(
m̃2 −µ2(m2, t )

)< 0

and down when the other inequality holds.

Proof 50 (Proof of Proposition 14). In the asymptotic case described by the equations (1.47)
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and (1.48), the HJB equations (1.44) become

r a (iθ;m2, t )

= ȧ (iθ;m2, t )+κ (iθ;m2, t ;π(iθ;m2, t ))

+λi ī

(
a

(
īθ;m2, t

)−a (iθ;m2, t )
)

+2Λµ
(
ī θ̄;m2, t

)[
a (iθ;m2, t )−Pd (m2, t )

(
θ̄−θ)−a (iθ;m2, t )

]+

+λa EM(m̃2)



δ(i ;m2, t ;m̃2)·
·
(

a
(
īθ;m̃2,0

)+π(iθ;m2, t ) (Pc (m̃2,0)−Pc (m2, t ))

−a (iθ;m2, t )

)
+ (1−δ(i ;m2, t ;m̃2)) ·
·
(

a (iθ;m̃2,0)+π(iθ;m2, t ) (Pc (m̃2,0)−Pc (m2, t ))

−a (iθ;m2, t )

)


+o(γ)

, (A.51)

with the optimal holdings “π(iθ;m2, t )” being defined in Lemma 49 for any type iθ and state

(m2, t ). Further, the asymptotic behavior of Equation (1.46) characterizes the bargained price

Pd as

Pd (m2, t ) = (a(2Θ;m2, t )−a(20;m2, t ))−ηΘ
(

(a(2Θ;m2, t )−a(20;m2, t ))

− (a(1Θ;m2, t )−a(10;m2, t ))

)
.

Just like in the stationary setting, it is convenient to first work with value function differences. I

thus define

∆Θ(m2, t )
∆= a(1Θ;m2, t )−a(2Θ;m2, t ) (A.52)

and

∆0(m2, t )
∆= a(20;m2, t )−a(10;m2, t ). (A.53)

Using the HJB equations (A.51) on the right-hand side of the definition (A.52) and rearranging

yields

(r +λ12 +λ21 +λa)∆Θ (m2, t )− ∆̇Θ (m2, t )

= κ (1Θ;m2, t ;π(iθ;m2, t ))−κ (2Θ;m2, t ;π(iθ;m2, t ))

−2Λµ
(
ī θ̄;m2, t

)
(∆Θ(m2, t )+∆0(m2, t ))

+λa EM(m̃2) [π(iθ;m2, t ) (Pc (m̃2,0)−Pc (m2, t ))]

+λa EM(m̃2) [(1−δ(1;m2, t ;m̃2)−δ(2;m2, t ;m̃2)∆Θ(m̃2, t )]

+o(γ)

. (A.54)
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The same procedure applied to the definition (A.52) yields

(r +λ12 +λ21 +λa)∆0 (m2, t )− ∆̇0 (m2, t )

= κ (20;m2, t ;π(iθ;m2, t ))−κ (10;m2, t ;π(iθ;m2, t ))

−2Λµ
(
ī θ̄;m2, t

)
(∆Θ(m2, t )+∆0(m2, t ))

+λa EM(m̃2) [π(iθ;m2, t ) (Pc (m̃2,0)−Pc (m2, t ))]

+λa EM(m̃2) [(1−δ(1;m2, t ;m̃2)−δ(2;m2, t ;m̃2)∆Θ(m̃2, t )]

+o(γ)

. (A.55)

Finally, taking the difference of (A.54) and (A.55) and recalling the characterization of S in

Lemma 49 yields the ODE(
r +λ12 +λ21 +λa +2Λ

(
η0µ(1Θ;m2, t )+ηΘµ(20;m2, t )

))
ε1Θ(m2, t )− ε̇1Θ(m2, t )

= S +λa EM(m̃2) [(1−δ (1;m2, t ;m̃2)−δ (2;m2, t ;m̃2))ε1Θ (m̃2, t )]+o(γ)
(A.56)

for the surplus

ε1Θ(m2, t )
∆= −∆Θ(m2, t )−∆0(m2, t )

(∆)= a(10;m2, t )−a(1Θ;m2, t )−a(20;m2, t )+a(2Θ;m2, t ).

Defining

R(m2, t )
∆= r +λ12 +λ21 +λa +2Λ

(
η0µ(1Θ;m2, t )+ηΘµ(20;m2, t )

)
and taking as given the function

F (m2, t )
∆=λa EM(m̃2) [(1−δ (1;m2, t ;m̃2)−δ (2;m2, t ;m̃2))ε1Θ (m̃2, t )] ,

the solution to the ODE (A.56) under the “no-bubble” condition

lim
T→∞

e−r T ε1Θ(m2, t ) = 0

is

ε(m2, t ) =S

∫ ∞

t
e−

∫ u
t R(m2,s) ds du +

∫ ∞

t
e−

∫ u
t R(m2,s) dsF (m2,u) du. (A.57)
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Finally, I must still check the existence of F (m2, t ). F (m2, t ) must satisfy

F (m2, t ) = λa EM(m̃2) [(1−δ (1;m2, t ;m̃2)−δ (2;m2, t ;m̃2))ε1Θ (m̃2, t )]

⇔ F (m2, t ) = λa EM(m̃2) [(1−δ (1;m2, t ;m̃2)−δ (2;m2, t ;m̃2))] ·
·
(
S

∫ ∞
t e−

∫ u
t R(m2,s) ds du +∫ ∞

t e−
∫ u

t R(m2,s) dsF (m2,u) du
)

.

(A.58)

One checks that the right-hand side of this last equality, seen as the image of the function

u 7→ F (m2,u) by an operator, satisfies the Blackwell’s sufficient conditions for a contraction

(monotonicity and “discounting”). In particular, there is exactly one solution to the equality

(A.58), and this solution must be positive when S is. Furthermore, this solution is increasing

in S and decreasing inΛ because the right-hand side of (A.58) is.

Given F , Equation (A.57) gives the surplus ε1Θ, and inspection shows that the surplus is also

positive when S is, increasing in S , and decreasing inΛ.

Then, Equations (A.54) and (A.55) uniquely characterize ∆Θ and ∆0, respectively. This can be

shown by an argument similar to the one characterizing Pc in Lemma 49. Finally, with ε1Θ,

∆Θ, and ∆0, four more arguments similar to the one in Lemma 49 uniquely characterize the

“a(iθ;m2, t )”s.

Proof 51 (Proof of Proposition 15). I assume that I can write

Pc (m2, t ) = Pc,0(m2, t )+ rγPc,1(m2, t )+o(γ),

π(iθ;m2, t ) = πc,0(iθ;m2, t )+ rγπc,1(iθ;m2, t )+o(γ),
(A.59)

for differentiable functions Pc,1 and {π1(iθ;m2, t }iθ. Injecting (A.59) into the first order con-

dition (A.47) for the optimal liquid holdings π(iθ,m2, t ) and recalling the characterization of

Pc,0 and {π0(iθ;m2, t }iθ in Proposition 49 yields the equation

0 = Ṗc,1(m2, t )− r Pc,1(m2, t )− rΣccπ1(iθ;m2, t )

+λa EM(m̃)



Pc,1 (m̃2,0)−Pc,1 (m2,0)

−r


π0(iθ;m2, t )

(
Pc,0 (m̃2,0)−Pc,0 (m2,0)

)
+δ(i ;m2, t )a0

(
īθ;m̃2,0

)
+ (1−δ(i ;m2, t )) a0 (iθ;m̃2,0)

−a0 (iθ;m2,0))

 ·
·(Pc,0 (m̃2,0)−Pc,0 (m2,0)

)


(A.60)

for Pc,1 and {π1(iθ;m2, t }iθ. Now, as

Sc = Eµ(iθ) [π(iθ;m2, t ] = Eµ(iθ) [π0(iθ;m2, t ]
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it follows that

0 = Eµ(iθ) [π1(iθ;m2, t ] .

Aggregating Equation (A.60) across the population then yields

0 = Ṗc,1(m2, t )− r Pc,1(m2, t )

+λa EM(m̃)

 Pc,1 (m̃2,0)−Pc,1 (m2,0)

−r

(
Sc

(
Pc,0 (m̃2,0)−Pc,0 (m2,0)

)2

+ (W (m̃2,0)−W (m2, t ))
(
Pc,0 (m̃2,0)−Pc,0 (m2,0)

) )  ,
(A.61)

with the notation

W0 (m2, t )
∆= Eµ(iθ;m2,t ) [a (iθ;m2, t )]

(
(∆)= µ(m2, t ) ·a (m2, t ))

)
. (A.62)

for the average certainty equivalent across the population. Combining Equation (A.49) with

Equation (A.61) then yields

1

dt

(
E[ Pc (m2, t + dt )| (m2, t )]

Pc (m2, t )
− r

)

= rγ


1

Pc,t

(
ScΣcc +λa E

[(
Pc,0 −Pc,t

)2
∣∣∣ (m2, t )

])
+ 1

Pc,t

(
SdΣcd +Σηc

)
+λa Em

(
h̃
) [(

Pc (m̃2,0)
Pc (m2,t ) −1

)
(W (m̃2,0)−W (m2, t ))

∣∣∣ (m2, t )
]

+o
(
γ
)

,
(A.63)

which is Expression 1.50 in the statement.

I still have to characterize the sensitivity of the expected returns

1

dt

(
E[ Pc (m2, t + dt )| (m2, t )]

Pc (m2, t )
− r

)
on the meeting rateΛ. On the right-hand side of (A.63), only the difference

W (m̃2,0)−W (m2, t )

asymptotically depends on Λ. Hence, I will first looks more carefully at W (m2, t). It follows

from the definition (A.62) of the average certainty equivalent W and the asymptotic HJB
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equations (A.51) that

r W (m2, t )−µ(m2, t ) · ȧ(m2, t )

= µ(m2, t ) ·κ (m2, t ;π(m2, t ))

+ (
λ12µ(1l ;m2, t )−λ21µ(2l ;m2, t )

)
∆0(m2, t )

+ (
λ21µ(2Θ;m2, t )−λ12µ(1Θ;m2, t )

)
∆Θ(m2, t )

+2Λµ (20;m2, t )µ (1Θ;m2, t )

+λaSc
(
EM(m̃2) [Pc (m̃2,0)]−Pc (m2, t )

)
+λa

(
EM(m̃2) [W (m̃2,0)]−W (m2,0)

)
+o(γ)

.

Rearranging then yields the ODE

(r +λa)W (m2, t )−Ẇ (m2, t ) =µ(m2, t ) ·κ(m2, t )+λa EM(m̃2) [W (m̃2,0)]

for W (m2, t ). Under a “no bubble” condition, the unique solution to this ODE is

W (m2, t ) =
∫ +∞

t
e−(r+λa )(u−t ))µ ·κ du

+ r +λa

r

∫ +∞

0
e−(r+λa )u EM(m̃2) [µ (m̃2,u) ·κ (m̃2,u)

]
du,

and I can characterize the quantity of interest as

W (m̃2,0)−W (m2, t ) =
∫ +∞

0
e−(r+λa )uµ (m̃2,u) ·κ (m̃2,u) du

−
∫ +∞

t
e−(r+λa )(u−t ))µ (m2,u) ·κ (m2,u) du.

(A.64)

Finally, combining Equation (A.64) with the result of Lemma 49 regarding the “κ(iθ;m2, t )”s,
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and those of Lemma 8 regarding the asymptotic type distribution yields

∂ 1
Λ

(W (m̃2,0)−W (m2, t ))+o

(
1

Λ

)
+O

(
γ
)

=
∫ +∞

0
e−(r+λa )uδµ (m̃2,u)


−1

1

1

−1

κ (m̃2,u) du

−
∫ +∞

t
e−(r+λa )(u−t ))δµ (m2,u)


−1

1

1

−1

κ (m2,u) du

= −S

∫ +∞

0
e−(r+λa )u (

δµ (m̃2,u)−δµ (m2,u)
)

du.

Finally, recalling that

δµ (m2,u) = λ12

2

Sd
Θ

µ2 (m2, t )− Sd
Θ

is decreasing in µ2 (m2, t ) over the support of M2, I conclude that

∂ 1
Λ

(W (m̃2,0)−W (m2, t )) < 0

exactly when

m̃2 <µ2 (m2, t ) .

Combining this last result with Lemma 49 completes the argument.

Technical results

Lemma 52. Consider a smooth map H :Ω→Ω for some Ω⊂ Rd . If for any i = 1, . . . ,d, there

exists a η< 1 so that

d∑
j=1

∣∣∣∣∂Hi

∂x j

∣∣∣∣ ≤ η,

then H is a contraction in l∞ and has a unique fixed point.
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Proof of Lemma 52. Fix x1, x2 ∈Ω and define, for t ∈ [0,1],

x(t )
∆= x1 + t (x2 −x1).

Then, for any i ∈ {1, . . . ,d},

|Hi (x2)−Hi (x1)| =
∣∣∣∣∣
∫ 1

0

∑
j

∂Hi

∂x j
(x(t ))(x2

j −x1
j ) dt

∣∣∣∣∣
≤

∫ 1

0

∑
j

∣∣∣∣∂Hi

∂x j
(x(t ))

∣∣∣∣ ∣∣∣x2
j −x1

j

∣∣∣ dt

≤∑
j

(
∂x j H

)
max

j

∣∣x2 j −x1 j
∣∣∫ 1

0
dt

≤ η‖x2 −x1‖l∞ .

The last claim follows from the Contraction Mapping Theorem (see [Stokey and Lucas, 1989,

Theorem 3.2, p.50]).

Proposition 53. Let us consider the system of equations

0 = rβk +
∑
j 6=k

κk j eβk−β j + ck
∆= Fk (β), k ∈ {1, . . . ,d} (A.65)

with the unknowns β≡ (β1, · · · ,βd ) ∈Rd . Then, this system admits a unique solution and this

solution is monotone decreasing in the components of K and c.

Proof of Proposition 53. I write β−k for the vector of β without βk .

First note that there exists a unique smooth function

Gk =Gk (β−k ,Kk ,ck )

for which β=Gk (β−k ,Kk ,ck ) is the unique solution to

rβ+ ∑
j 6=k

κk j eβ−β j + ck = 0.

Furthermore, Gk is monotone increasing in the components of β−k , and monotone decreasing

in κk j and ck for all j 6= k.

Then, I show that the functions Gk define a contraction by applying Lemma 52. Namely, I

first show that G maps a compact set into itself. Let me choose two real numbers L <U , and

130



assume that for any k ∈ {1, . . . ,d},

βk ∈ [L,U ]d−1.

For a given k, let me further define two functions, F L
k and FU

k , that bound the function Fk

defined in (A.65). Namely,

rβ+ ∑
j 6=k

κk j eβ−U + ck
∆=F L

k (β)

≤Fk (β)

≤FU
k (β)

∆= rβ+ ∑
j 6=k

κk j eβ−L + ck .

Now, due to the monotonicity of Fk
(·,β−k

)
, if

0 ≤ F L
k (U ) = rU + ∑

j 6=k
κ j k + ck (A.66)

and

0 ≥ FU
k (L) = r L+ ∑

j 6=k
κ j k + ck (A.67)

then

Gk (β−k ) ∈ [L,U ].

But both (A.66) and (A.67) will hold for all k ∈ {1, . . . ,d} as soon as

U ≥ max
k∈{1,...,d}

−1

r

(∑
j 6=k

κ j k + ck

)

and

L ≤ min
k∈{1,...,d}

−1

r

(∑
j 6=k

κ j k + ck

)
.

Now, by the Implicit Function Theorem,

∂Gk (β−k )

∂β j
= κk j eGk (β−k )−β j

r +∑
j 6=k κk j eGk (β−k )−β j

,

which can be bounded strictly below 1, uniformly in β−k ∈ [L,U ]d−1, for L and U chosen as
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above. But then, Lemma 52 ensures the existence and uniqueness of a fixed point on [L,U ]d .

Finally, as −L and U can be chosen arbitrarily large, the existence and uniqueness on Rd hold.

Monotonicity follows because

β∗ = lim
n→∞Gn(β0)

for any fixed β0 and G is monotone.

Verification argument

I intend to show that the HJB equations (1.13) actually describe an optimal behaviour.

Being more specific, on the one hand, a given agent with wealth w and type iθ maximizes

V (w, iθ)
∆= max

c̃
E

[∫ ∞

0
e−ρt (−e−γc̃s

)
ds

∣∣∣∣w0 = w, i0θ0 = iθ

]
, (A.68)

under the conditions that follow.

• The budget constraint

dwt = r wt dt − c̄t dt + dηt +θt dDd t +πt ( dDct − r Pc dt )−Pd dθt

holds for a liquid holding process taking values in [−K ,K ], with K positive and large.5

• The price Pd is the outcome of a bargaining with another agent;

• For any T > 0,

Ew,iθ
[∫ T

0

(
e−ρue−rγwu

)2 du

]
<+∞ (A.69)

and

lim
T→∞

e−ρT Ew,iθ [
e−γWT

]= 0. (A.70)

5See footnote 12 for conditions on K .
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On the other hand, the HJB equation for the problem above is

ρV (w, iθ) = sup
c̃,π̃

U (c̃)

+ ∂V

∂w
(w, iθ)

(
r w − c̃ +mη+θmd + π̃ (mc − r Pc )

)
+ 1

2

∂2V

∂w2 (w, iθ)
(
1 θ π̃

)
Σi

(
1 θ π̃

)∗
+λi ī

(
V (w, īθ)−V (w, iθ)

)
+2ΛEµ(b) [1surplus

(
V (w − (θ̄−θ)Pd , i θ̄))−V (w, i ,θ)

)]
,

(A.71)

and Proposition 5 shows that there exists a unique solution of the form

Ṽ (w, iθ) =−exp
(−rγ (w +a(iθ)+ ā)

)
to (A.71). It remains to show that the candidate Ṽ is the solution to the problem (A.68). This is

the object of the next proposition.

Proposition 54. If the risk aversion γ is small enough, the function Ṽ is the solution to the HJB

equations (A.71) and the associated consumption and investment strategies are optimal.

Proof of Proposition 54. My argument comprises four steps.

• Lemma 55 shows that no admissible strategy can achieve an expected utility higher than

Ṽ .

• Lemma 56 shows that the strategy dictated by Ṽ is admissible when the risk aversion γ

is small enough.

• Lemma 57 shows the strategy dictated by the HJB equations yields an expected utility

equal to Ṽ .

I first show that Ṽ represents an upper bound on the attainable expected utilities.

Lemma 55. If all the agents believe that their value function is given by Ṽ , then, for any

admissible consumption strategy c̃ financed by the trading strategy π̃,

Ṽ (w, iθ) ≥ sup
c̃

Ew,iθ
[∫ ∞

0
e−ρuU (cu) du

]
.

Proof. First note that the beliefs regarding the value functions will already fix the outcome

of the Nash bargaining, meaning that both the price Pd of the illiquid asset and the cross-

sectional distribution of types µ are fixed.
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Let me choose an admissible consumption strategy c financed by the trading strategy π, and a

time T > 0. Recalling the budget constraint,

E

[∫ T

0
e−ρuU (cu) du +e−ρT Ṽ (wT , iT θT )

]
=E

[∫ T

0
e−ρuU (cu) du + Ṽ (w0, i0θ0)+

∫ T

0
d

(
e−ρuṼ (wu , iuθu)

)]
=E

[
Ṽ (w0, i0θ0)+∫ T

0 e−ρuU (cu) du

+∫ T
0

(−ρe−ρuṼ (wu , iuθu)
)

du +∫ T
0 e−ρu d

(
Ṽ (wu , iuθu)

) ]

=E



Ṽ (w0, i0θ0)

+∫ T
0 e−ρu



U (cu) du

− ρṼ (wu , iuθu) du

+ ∂Ṽ
∂w (wu , iuθu)


(r wu − cu) du

+ deu

+θu dDdu

+πu ( dDcu − r Pc du)


+ 1

2
∂2Ṽ
∂w 2 (wu , iuθu)

(
1 θu πu

)
Σi

(
1 θu πu

)∗
du

+ (
Ṽ (wu , īuθu)− Ṽ (wu , iuθ)

)
dN i

u

+ max

{
0,

Ṽ (wu − (θ̄u −θu)Pd , iuθu)

−Ṽ (wu , iuθu)

}
dN m

u





=E



Ṽ (w0, i0θ0)

+∫ T
0 e−ρu



U (cu) du

− ρe−ρuṼ (wu , iuθu) du

+ ∂Ṽ
∂w (wu , iuθu)


r wu − cu

+me

+θumd

+πu (mc − r Pc )

 du

+ ∂Ṽ
∂w (wu , iuθu)

 αη(iu)

αd (iu)+θuσd

αd (iu)+πuσc

 ·

 dZu

dBd ,u

dBc,u


+ 1

2
∂2Ṽ
∂w 2 (w, iθ)

(
1 θu πu

)
Σi

(
1 θu πu

)∗
du

+ (
Ṽ (wu , īuθu)− Ṽ (wu , iuθu)

)
dN i

u

+ max

{
0,

Ṽ (wu − (θ̄u −θu)Pd , iuθu)

−Ṽ (wu , iuθu)

}
dN m

u




∆=(∗),

with N i being the idiosyncratic jump process driving the exposure changes and N m the jump

process defining the meeting times on the OTC market.
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Now, defining

K1
∆= (

rγ
)2 sup

iθ

π̃ ∈ [−K ,K ]

e−2(a(iθ)+ā)
(
1 θ π̃

)
Σi

(
1 θ π̃

)∗ ∈R,

and recalling the admissibility condition (A.70) on (c,π), I may write

E


∫ t

0
e−ρu ∂Ṽ

∂w
(wu , iuθu)

 αη(iu)

αd (iu)+θuσd

αd (iu)+πuσc

 ·

 dZu

dBd ,u

dBc,u




2


=E

[∫ t

0

(
e−ρu ∂Ṽ

∂w
(wu , iuθu)

)2 (
1 θu πu

)
Σi

(
1 θu πu

)∗
du

]

≤K1 E

[∫ t

0
e−2(ρu+rγwu) du

]
<∞.

In particular, in (∗), the stochastic integrals against the Brownian motions are true martingales,

and their expected values equal zero.

I now turn to the stochastic integrals against the Poisson processes. Keeping in mind the

admissibility condition (A.69),∫ t

0

∣∣Ṽ (wu , īuθu)− Ṽ (wu , iuθu)
∣∣ du

≤sup
iθ

∣∣∣e−rγ(a(iuθu )+ā) −e−rγ(a(iuθu )+ā)
∣∣∣∫ t

0
e−rγwu du

<∞.

But then, using a classical result (see, for example, Brémaud [1981][Lemma C4, p.235]),

E

[∫ T

0
e−ρu (

Ṽ (wu , īuθu)− Ṽ (wu , iuθu)
)

dN i
u

]
=E

[∫ T

0
e−ρuλiu īu

(
Ṽ (wu , īuθu)− Ṽ (wu , iuθu)

)
du

]
.

Similarly,

E

[∫ T

0
e−ρu max

{
0,

Ṽ (wu − (θ̄u −θu)Pd , iuθu)

−Ṽ (wu , iuθu)

}
dNθ

u

]

=E

[∫ T

0
e−ρu2λµ(īu θ̄u)max

{
0,

Ṽ (wu − (θ̄u −θu)Pd , iuθu)

−Ṽ (wu , iuθu)

}
du

]
.
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I may thus write

(∗) =E



Ṽ (w0, i0θ0)

+∫ T
0 e−ρu



U (cu)

− ρe−ρuṼ (wu , iuθu)

+ ∂Ṽ
∂w (wu , iuθu)


r wu − cu

+mη

+θumd

+πu (mc − r Pc )


+ 1

2
∂2Ṽ
∂w 2 (w, iθ)

(
1 θu πu

)
Σi

(
1 θu πu

)∗
+ λiu īu

(
Ṽ (wu , īuθu)− Ṽ (wu , iuθu)

)
+ 2Λµ

(
īu θ̄u

)
max

{
0,

Ṽ (wu − (θ̄u −θu)Pd , iuθu)

−Ṽ (wu , iuθu)

}



du



≤E



Ṽ (w0, i0θ0)

+∫ T
0 e−ρu supc̃,π̃



U (c̃)

− ρe−ρuṼ (wu , iuθu)

+ ∂Ṽ
∂w (wu , iuθu)


r wu − c̃

+mη

+θumd

+π̃ (mc − r Pc )


+ 1

2
∂2Ṽ
∂w 2 (wu , iuθu)

(
1 θu π̃

)
Σi

(
1 θu π̃

)∗
+ λiu īu

(
Ṽ (wu , īuθu)− Ṽ (wu , iuθu)

)
+ 2Λµ

(
īu θ̄u

)
max

{
0,

Ṽ (wu − (θ̄u −θu)Pd , iuθu)

−Ṽ (wu , iuθu)

}



du


=Ṽ (w0, i0θ0).

Taking things together, this means that, for any T > 0,

Ṽ (w0, i0θ0) ≥ E

[∫ T

0
e−ρuU (cu) du

]
+e−ρT E

[
Ṽ (wT , iT θT )

]
.

Letting T become arbitrarily large in this last expression, recalling the admissibility condition

(A.70) satisfied by the strategy (c,π), and realizing that the process

(a(itθt ))t≥0

can only take one of four finite values, yields

Ṽ (w0, i0θ0) ≥ lim
T→∞

E

[∫ T

0
e−ρuU (cu) du

]
+e−ρT E

[
Ṽ (wT , iT θT )

]
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≥E

[∫ ∞

0
e−ρuU (cu) du

]
+ lim

T→∞
e−ρT E

[−e−rγwT
]

sup
iθ

e−rγ(a(iθ)+ā)

=E

[∫ ∞

0
e−ρuU (cu) du

]
.

As the consumption and trading strategies were arbitrary, this concludes.

I now propose a condition under which the strategy dictated by the HJB equations is admissi-

ble.

Lemma 56. For γ small enough, the strategy (ĉt , π̂t ) dictated by the optimization in the HJB

equation is admissible.6

Proof. The candidate strategy must satisfy two admissibility properties. The first one is (A.69),

meaning

E

[∫ T

0

(
e−ρue−rγŵu

)2
du

]
<∞.

Now, from Proposition 4, the optimal consumption policy is

ĉ(iθ, w) = r (w +a(iθ)+ ā)− 1

γ
log(r ),

and the resulting wealth dynamics are

dŵt =
(
−r (a(iθ)+ ā)+ 1

γ
log(r )

)
dt + dηt +θt dDd ,t + π̂t

(
dDd ,t − r Pd dt

)−Pd dθt .

I may thus write

ŵt −w0

=
∫ t

0

(
−r (a(iθ)+ ā)+ 1

γ
log(r )+mη+θumd + π̂u (mc − r Pc )

)
du −Pd (θT −θ0)

+
∫ t

0

αd (iu)+θuσd

αc (iu)+πuσc

αη(iu)

 ·

 dBd ,u

dBc,u

dZu

 .

In particular, recalling that the Brownian motions and Poisson processes are independent,

6I let the risk aversion coefficient go to zero, γ→ 0, and simultaneously scale up the diffusion coefficients, as
described in Equation (1.48).
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and defining, for t ≥ 0,

mt
∆=

∫ t

0

(
−r (a(iθ)+ ā)+ 1

γ
log(r )+mη+θumd + π̂u (mc − r Pc )

)
du −Pd (θt −θ0) ,

and

s2
t
∆=

∫ t

0

(
1 θu π̂(iuθu)

)
Σi

 1

θu

π̂(iuθu)

 du,

I know that the distribution of the wealth conditional on the history of the correlation shocks

and OTC trades is

L
(
ŵt |(iuθu)0≤u≤t

)=N
(
mt , s2

t

)
.

Further, for t ≥ 0, and defining the two constants

K2
∆= min

iθ

π ∈ [−K ,K ]

{−r a(iθ)+θmd +π (mc − r Pc )}

and

K3
∆= sup

iθ

(
1 θ π(iθ)

)
Σi

 1

θ

π(iθ)

 ,

I can write both

mt ≥ t

(
K2 + 1

γ
log(r )− r ā +mη

)
−|Pd |∆θ,

and

s2
t ≤ tK3.

As a result,

E

[∫ T

0

(
e−ρue−rγŵu

)2
du

]
=

∫ T

0
e−2ρu E

[
e−2rγŵu

]
du

=
∫ T

0
e−2ρu E

[
E

[
e−2rγŵu

∣∣∣ (ivθu)0≤v≤u

]]
du

=
∫ T

0
e−2ρu E

[
e−2rγmu+2(rγ)2s2

u

]
du
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≤
∫ T

0
e
−2ρu−2rγu

(
K2+ 1

γ
log(r )−r ā+mη

)
+2rγ|Pd |∆θ+2u(rγ)2K3 du

≤e2rγ|Pd |∆θ
∫ T

0
e
−2u

(
ρ+rγ

(
K2+ 1

γ
log(r )−r ā+mη

)
−(rγ)2K3

)
du

<∞.

I must still show that the candidate policy satisfies the transversality condition (A.70), meaning

that

lim
T→∞

e−ρT E
[

e−rγŵT

]
= 0.

The argument is similar to the one in the first part. Namely, for a given T > 0,

e−ρT E
[

e−rγŵT

]
=e−ρT E

[
E

[
e−rγŵT

∣∣∣ (isθs)0≤s≤t

]]
=E

[
e−ρT−rγmT + 1

2 (rγ)2s2
T

]
.

(A.72)

Now, recalling the choice

ā
(∆)= 1

rγ

(
−1+ ρ

r
+γme + log(r )

)
in (1.20), the exponent on the right-hand side of (A.72) is

−ρT − rγmT + 1

2
(rγ)2s2

T

=
∫ T

0

 −ρ− rγ
(

1
γ log(r )− r (a(iuθu)+ ā)+mη+θumd + π̂u (mc − r Pc )

)
+1

2 (rγ)2
(
1 θu π̂(iuθu)

)
Σi

(
1 θu π̂(iuθu)∗

)  du

− rγPd (θT −θ0)

=
∫ T

0
rγ

(
−1

γ
+ r a (iuθu)−κ(iuθu)

)
du − rγPd (θT −θ0) .

(A.73)

Now, recall that the “κ(iθ)”s are independent of γ in the asymptotic case defined by the

equations (1.47) and (1.48). Hence, for a small enough γ, there exists an ε> 0 for which∫ T

0

(
−1

γ
+ r a(iuθu)−κ(iuθu)

)
du ≤

∫ T

0
−ε du =−εT. (A.74)

Finally, combining (A.72), (A.73), and (A.74),

0 ≤ lim
T→∞

e−ρT E
[

e−rγŵT

]
≤ lim

T→∞
erγ|Pd |∆θe−rγεT = 0,
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as stated.

The last step is to show that the beliefs are rational. In other words, I must show that the strategy

dictated by Ṽ and the HJB equations indeed generates an expected utility from consumption

equal to Ṽ .

Lemma 57. Assuming that γ is small enough, in the sense of Lemma 56, and writing (ĉ, π̂) for

the strategy dictated by the HJB equations, then

Ṽ (w, iθ) = E

[∫ ∞

0
e−ρuU (ĉu)

∣∣∣∣w0 = w, i0θ0 = iθ

]
.

Proof. Thanks to the admissibility of the candidate policy, first, the process(∫ t

0
e−ρuU (cu) du +e−ρuṼ (wu , iuθu)

)
t≥0

is a martingale and, second,

lim
T→∞

e−ρT E
[−e−rγwT

]= 0.

One may then conclude that

Ṽ (w0, i0θ0) = E

[∫ T

0
e−ρuU (ĉu) du

]
,

by an argument similar to the one in the proof of Lemma 55.

This concludes the proof of Proposition 54.
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Proof of Proposition 19. This proof is based on arguments in Gârleanu [2009] and, more specif-

ically, in Section of that article. First, given a trading pattern on the OTC market, we know the

type dynamics. And given both the type dynamics and a vector of liquid holdings as described

in Assumption 18, the dynamics of the holdings in the liquid asset c are also known.

Second, taking the vector of liquid holdings Π̃ and the equilibrium mid-price Pc as given,

the value functions must satisfy the HJB equation (2.10). When we let the coefficient of risk-

aversion γ go to zero, and scale accordingly the diffusion coefficients, the equation (2.10)

becomes the HJB equation for a problem closely related to the original investor’s problem.

Namely, asymptotically, the equation (2.10) is the HJB equation for a problem in which the

value functions are given by

a
(
iθ,π;Π̃

) ∆= EΠ̃


∫ ∞

t e−r (s−t )κ (isθs ,πs) ds

−Pd
∫ ∞

t e−r (s−t ) dθs

−∫ ∞
t e−r (s−t )

(
Pc +q1πs>πs− −q1πs<πs−

)
dπs

∣∣∣∣∣∣∣
et = ei

θt = θ

πt = π

 (B.1)

and for which there is no control. The definition of the “κ (iθ,π)”s is recalled in Equation (2.9)

in the main text. The problem (B.1) corresponds to investors who are risk-neutral and have

quadratic preferences on the asset holdings.1 Now, as

V
(
w, iθ,π;Π̃

)=−e−rγ(w+a(iθ,π;Π̃)+ā),

1The formulation (B.1) thus draws an explicit link between two competing modeling of asset pricing with
search friction. The competing modeling are, on the one hand, the models based on Duffie et al. [2007], in which
utility is induced by consumption from wealth, and, on the other hands, models based on Lagos and Rocheteau
[2009], in which utility stems from holding the illiquid asset.
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optimizing the value functions

V
(
w, iθ,π;Π̃

)
over Π̃ is equivalent to finding the vector Π̃ that maximizes the functions

a
(
iθ,π;Π̃

)
in (B.1). We characterize the optimal holdings Π by looking at deviations from Π. Namely,

let us consider the deviation consisting of buying ε units of the liquid asset c at time t and

going back to the optimal strategyΠ at the time of the next trade. When ε is small enough, the

difference between the value function underΠ and under the deviation satisfies

aε
(
iθ,π;Π̃

)−a
(
iθ,π;Π̃

)
ε

=

−ε(Pc +q
)

EΠ̃

 ∫ τ
t e−r (s−t ) (κ (isθs ,πs +ε)−κ (isθs ,πs))

−e−rτε
(
Pc +q1πτ>πτ− −q1πτ<πτ−

)
∣∣∣∣∣∣∣

et = ei

θt = θ

πt = π


ε

ε→0−→− (
Pc +q

)+EΠ̃

 ∫ τ
t e−r (s−t ) (∂πκ (isθs ,πs))

−e−rτ
(
Pc +q1πτ>πτ− −q1πτ<πτ−

)
∣∣∣∣∣∣∣

et = ei

θt = θ

πt = π

 .

For the deviation not to be profitable, this last expression must be non-positive. Further noting

that the process (πs)s is constant over the interval [t ,τ), we have shown the inequality (2.11) in

the statement.

If τ is the next jump of a Poisson process with intensity λτ, then it has an exponential distribu-

tion with parameter λτ. Combining the inequality (2.11),

E
[
e−r s]= λτ

r +λτ
and

E

[∫ τ

0
e−r s ds

]
= 1

r +λτ
yields the inequality (2.13).

Starting our argument with a marginal sale of the liquid asset, instead of a marginal purchase,

yields the inequalities (2.12) and (2.14).
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Finally, if an investor is completing a purchase at time t , meaning that

πt >πt−,

the effective current price for both a marginal purchase and a marginal sale is Pc + q . As a

result, the inequality (2.12), or (2.14) when it applies, must hold with a marginal price of Pc +q

instead of Pc −q on the left hand-side. As a result, the inequality (2.11) becomes an equality. A

similar argument holds in case of a current sale of the liquid asset.

Proof of Proposition 20. The proof is constructive. More specifically, the equilibrium is the

output of the algorithm that follows.

Algorithm 2: Calculating an equilibrium with transaction costs

Data: model parameters

Result: a mapping

q 7→ (Π,Pc ) (q)

associating a vector of holdingsΠ and a mid-price Pc to any level of transaction costs

q

begin
Initialize q to 0 and initializeΠ and Pc to the equilibrium holdings and price in the setting

without transaction costs, as described in the first chapter of this dissertation

Derive the trading pattern p induced byΠ

while not all entries of p are ; (no trade at all) do
For all the actual trades in p, calculate the threshold for the transaction costs beyond

which the first order conditions (2.11) and (2.12) cease to hold

set the entry (or entries) in p corresponding to the smallest of these thresholds to ;
RecalculateΠ using part 3 of Proposition 19

Recalculate Pc with the market clearing condition
end

end

By construction, the output of the algorithm satisfies all the equilibrium conditions.

Lemma 58. Assuming that the transaction costs q are small enough, the stationary distribution

of types is given by

µ(1lb) =2λµ(1h)µ(2l )

λ12
,

µ(1l s) =µ(2l )
λ21

λ12
,
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µ(1hs) =µ(1h),

µ(2lb) =µ(2l ),

µ(2hb) =µ(1h)
λ12

λ21
,

µ(2hs) =2λµ(1h)µ(2l )

λ21
,

with the masses of the types with two digits being those derived in the first version of the model.

Proof. The proof follows immediately from the flow equations.
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C The TRACE reporting System

The Trade Reporting And Compliance Engine (TRACE) is a program initiated in 2002 by the

National Association of Security Dealers (NASD). This program collects and disseminates

anonymized bond transaction data. This program is aimed at introducing post-trade trans-

parency on US bond markets, a major OTC market. A number of empirical studies find

that TRACE made it possible for all investors to trade at prices closer to the inter-dealer price.

TRACE is thus generally considered to have been a positive development, and similar programs

have been initiated.1,2

However, some recent evidence indicates that TRACE may have reduced trading volumes for

certain types of bonds. Hence, on certain bond markets, post-trade transparency moved two

popular measures of liquidity in opposite directions. Namely, bid-ask spreads dropped, as

did trading volumes. Furthermore, certain bond market participants expressed the view that

TRACE had been detrimental to market liquidity. A transparent OTC market, these market

participants argue, reduces the incentives to hold inventories and “make the market."3

1Apparently, the reduction of the bid-ask spreads after the introduction of TRACE was driven by the improved
bargaining power of the bond investors. See Goldstein, Hotchkiss, and Sirri [2007], Bessembinder, Maxwell, and
Venkataraman [2006], and Edwards, Harris, and Piwowar [2007] for empirical discussing TRACE and bid-ask
spreads. Bessembinder and Maxwell [2008] provides a non technical discussion on the same topic, with a number
of institutional details. Green, Hollifield, and Schürhoff [2007] discuss bid-ask spreads on the OTC market for
municipal bonds.

2For example, the Financial Industry Regulatory Authority (FINRA) now collects transaction data for securitized
products. See Hollifield, Neklyudov, and Spatt [2012] for an empirical analysis of opacity on the markets for
securitized products.

3Asquith, Covert, and Pathak [2013] find that TRACE decreased the trading volumes by up to 41.3% for certain
categories of bonds. Das et al. [2013] argues that TRACE made bond markets less liquid. Bessembinder and
Maxwell [2008] reports complaints by bond market investors about the introduction of TRACE and its adverse
effect on liquidity. Finally, bond dealers lobbied against the introduction of TRACE. Their main arguments are
summarized in NASD [2006] and largely overlap with the complaints in Bessembinder and Maxwell [2008].
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Proof 59 (Proof of Lemma 24 ). In the HJB equation (3.5), the first-order condition for the

optimization over the consumption rate c̃ is

U ′(c)−Vw (w, z) = 0

⇔ −γU (c) = −αV (w, z)

⇔ U (c) = α
γV (w, z),

which is the second statement above. Solving for the optimal consumption now yields

U (c) = α
γV (w, z)

⇔ −e−γc = −α
γ e−α(w+v(z)+v̄)

⇔ c = α
γ (w + v(z)+ v̄)− 1

γ log
(
α
γ

)
.

Also, the concavity of the utility function U (·) ensures that the solution of the first-order

condition is a point of maximum.

Proof 60 (Proof of Proposition 27). The proof of Proposition 27 is in six steps and proceeds

along the lines of Definition 26, the definition of a partial equilibrium.

step (i) We first assume that the function v(·) that characterizes the value functions is quadratic.

Namely,

v(z) = v0 + v1z + v2z2

defines a partial equilibrium. Let us also assume that v2 < 0, meaning that v(·) is strictly

concave.

step (ii) We derive the optimal purchasing policy, given v(·). Namely, a z-agent who was
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offered to trade at the price p solves the optimization

sup
q̃

{
v

(
z + q̃

)− q̃p
}

.

The first-order condition yields a unique candidate,

q = (
v ′)(−1) (p)− z = p − v1

2v2
− z

∆=Q(z, p).

By the concavity assumption on v(·), this candidate is a point of maximum, and Q(·, ·) is the

optimal purchase policy.

step (iii) We derive the optimal quoting policy given the purchasing policy Q(·, ·) and v(·). Let

us consider a z-investor who was contacted by a za-investor, accepted to provide a quote, and

observes the signal

sa = X za + (1−X )ζ

with

X ∼ B(1,τ); ζ∼µ; X , ζ : independent. (D.1)

The optimal quote solves the maximization

sup
p̃

EL (za ,sa ) [Q
(
za , p̃

)
p̃ + v

(
z −Q

(
za , p̃

))∣∣ sa
]

.

The first-order condition for this maximization is

EL (za ,sa )

[
Qp

(
za , p

)
p +Q

(
za , p

)
+v ′ (z −Q

(
za , p

))(−Qp (za , p)
) ∣∣∣∣∣ sa

]
= 0

⇔ EL (za ,sa )

 1
2v2

p +
(

p−v1

2v2
− za

)
+

(
v1 +2v2

(
z −

(
p−v1

2v2
− za

)))(
− 1

2v2

) ∣∣∣∣∣∣ sa

= 0

⇔ EL (za ,sa )
[

1

2v2
p + p − v1

2v2
− za − v1

2v2
− z + p − v1

2v2
− za

∣∣∣∣ sa

]
= 0

⇔ 3

2v2
(p − v1)− z −2EL (za ,sa ) [ za | sa] = 0. (D.2)
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Now, given the definition of the signal in (D.1) and choosing s ∈R, Bayes’ rule yields

EL (za ,sa ) [ za | sa = s]

=P[X = 1]EL (za ,sa ) [ za | sa = s, X = 1]

+P[X = 0]EL (za ,sa ) [ za | sa = s, X = 0]

=τEL (za ,sa ) [ za |za = s, X = 1]

+ (1−τ)EL (za ,sa ) [ za |ζ= s, X = 0]

=τs + (1−τ)EL (za ,sa ) [za]

=τs + (1−τ)M .

(D.3)

Injecting (D.3) into (D.2) and solving for p yields

p = v1 +2v2

(
1

3
z + 2

3
(τsa + (1−τ)M )

)
∆= P (z, sa) .

Again, the concavity of v(·) makes this candidate a point of maximum, and P (·, ·) is the optimal

quoting policy.

step (iv) We derive the expected benefits resulting from providing a quote. Namely, let us

assume that a z-investor was asked for a quote by a za-investor. If the z-investor accept to

issue a quote, she will receive the signal

sa(ω) = X (ω)za + (1−X (ω))ζ= s (D.4)

and the optimal quote will be P (z, s), as defined in the step (iii). As a result, the expected

benefits resulting from providing a quote are

EL (za ,sa )

[
sup

p̃
EL (za ,sa ) [Q

(
za , p̃

)
p̃ + v

(
z −Q

(
za , p̃

))− v(z)
∣∣ sa = s

]]
= EL (za ,sa )

[
EL (za ,sa ) [Q (za ,P (z, s))P (z, s)+ v

(
z −Q

(
za , p̃

))− v0(z)
∣∣ sa = s

]]
= − v2

3
EL (za ,sa )


(
4M 2(1−τ)2 −3(1−τ)

(
M 2 +V

)−2M (1−τ)z + z2
)

+2τ(4M (1−τ)− z)sa

+(4τ−3)τs2
a


∆= (∗).

Given the definition of the signal sa in (D.4), the law of sa is µ, the cross-sectional distribution
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of types.1 Plugging in the moments of sa , we can rewrite (∗) as

(∗) =−v2

3

(
4M 2 (

1−τ2)+ (
M 2 +V

)(
4τ2 −3

)−2M z + z2) ,

which is a quadratic expression in z with a positive leading coefficient and a determinant

equal to

−4

9

(
4τ2 −3

)
v2

2V .

In particular, under the assumption (3.11), this determinant is always non-positive and the

expected benefits from quoting are always non-negative. In particular,

A
(∆)=

{
z : EL (za ,sa )

[
sup

p̃
EL (za ,sa ) [Q

(
za , p̃

)
p̃ + v

(
z −Q

(
za , p̃

))∣∣ sa
]]≥ v(z)

}
=R

and, in the third line of the right-hand side of the HJB equation (3.10), taking the positive part

has no effect.

step (v) We derive the expected benefits resulting from asking for a quote. Combining the

results from steps (ii), (iii), and (iv), we calculate the expected benefits to a z-agent who just

1Choosing x ∈R,

P[sa ≤ x] = E[ P[sa ≤ x|X ]]

= P[X = 1]E[ P[sa ≤ x|X = 1]]+P[X = 0]E[ P[sa ≤ x|X = 0]]

= τP[za ≤ x]+ (1−τ)P[ζ≤ x]

=µ ((−∞, x]) .

As a result, sa ∼µ.
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asked another agent for a quote to be

EL (zq ,sz )

[
1{zq∈A} sup

q̃

(−q̃P
(
zq , sz

)+ v
(
z + q̃

)− v(z)
)]

= EL (zq ,sz )

[
EL (zq ,sz )

[
−Q(zq ,P

(
zq , sz

)
)P

(
zq , sz

)
+v

(
z +Q(zq ,P

(
zq , sz

)
)
)− v(z)

∣∣∣∣∣ X

]]

= P[X = 1]EL (zq ,sz )

[
−Q(zq ,P

(
zq , sz

)
)P

(
zq , sz

)
+v

(
z +Q(zq ,P

(
zq , sz

)
)
)− v(z)

∣∣∣∣∣ X = 1

]

+P[X = 0]EL (zq ,sz )

[
−Q(zq ,P

(
zq , sz

)
)P

(
zq , sz

)
+v

(
z +Q(zq ,P

(
zq , sz

)
)
)− v(z)

∣∣∣∣∣ X = 0

]

= τEL (zq ,sz )

[
−Q(zq ,P

(
zq , za

)
)P

(
zq , za

)
+v

(
z +Q(zq ,P

(
zq , za

)
)
)− v(z)

]

+ (1−τ)EL (zq ,sz )

[
−Q(zq ,P

(
zq ,ζ

)
)P

(
zq ,ζ

)
+v

(
z +Q(zq ,P

(
zq ,ζ

)
)
)− v(z)

]

= − 1

9
v2

 M 2
(
4(τ−3)τ2 +9

)+V
(
4(1−τ)τ2 +1

)
−M

(
4(τ−3)τ2 +9

)
z

+(
4(τ−3)τ2 +9

)
z2



,

which is quadratic in the current type z.

step (vi) Using the assumption regarding v(·) in step (i) along with results in steps (iv) and (v),

we rewrite the HJB equation (3.10) as

0 = 1

9
v2

(−4λM 2 (
(τ−3)τ2 +3

)+9σ2
z +4λ

(
(τ−4)τ2 +2

)
V

)− r v0

+
(
µ+ 8

9
λM

(
(τ−3)τ2 +3

)
v2 − r v1

)
z

+
(
−1

2
γrσ2 − 1

9
v2

(
4λ

(
(τ−3)τ2 +3

)+9r
))

z2.

For the equation to hold for any type z, it must be that
0 = 1

9 v2
(−4λM 2

(
(τ−3)τ2 +3

)+9σ2
z +4λ

(
(τ−4)τ2 +2

)
V

)− r v0

0 = µ+ 8
9λM

(
(τ−3)τ2 +3

)
v2 − r v1

0 = −1
2γrσ2 − 1

9 v2
(
4λ

(
(τ−3)τ2 +3

)+9r
)
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This system is linear in the coefficients v0, v1, and v2 and admits the unique solution
v0 = γσ2(4λM 2((τ−3)τ2+3)−9σ2

z−4λ((τ−4)τ2+2)V )
8λ((τ−3)τ2+3)+18r

v1 = µ
r − 4γλMσ2((τ−3)τ2+3)

4λ((τ−3)τ2+3)+9r

v2 = − 9γrσ2

8λ((τ−3)τ2+3)+18r

.

In particular, for these values of v0, v1, and v2, the function v(·) defined in step (i), the function

Q(·, ·) defined in step (ii), the function P (·, ·) defined in step (iii), and the set A =R defined in

step (iv) satisfy all the conditions in Definition 26 and, thus, define a partial equilibrium of the

model.

Proof 61 (Proof of Corollary 29). The type dynamics of a are given by (3.2), meaning by

dzt =σ dBt + dθt , (D.5)

with the first term being the idiosyncratic variation of the exposure and the second term being

the discontinuous changes of exposure induced by trading.

Combining the trading strategy summarized in Section 3.2 and the equilibrium quoting and

purchasing strategies stated in Proposition 27, we characterize the possible jumps as follows.

1. When a requests a quote at time t and the signal about her is correct, a’s type becomes

zt−+Q
(
zt−,P

(
zq , zt−

))= 1

3
zq + 2

3
(τzt−+ (1−τ)M ) ,

with zq being the type of the quoter.

2. When a requests a quote at time t and the signal about her is uninformative, a’s type

becomes

zt−+Q
(
zt−,P

(
zq ,ζr

))=1

3
zq + 2

3
(τζr + (1−τ)M ) ,

with zq being the type of the quoter and ζr being the uninformative signal.

3. When a is asked for a quote at time t and receives an informative signal, a’s type becomes

zt−−Q (zr ,P (zt−, zr )) =zr + 2

3
(zt−− (τzr + (1−τ)M )) ,

with zr being the type of the investor who requested a quote.

4. When a is asked for a quote at time t and receives an uninformative signal, a’s type
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becomes

zt−−Q
(
zr ,P

(
zt−,ζq

))=zr + 2

3

(
τzt−− (

τζq + (1−τ)M
))

,

with zr being the type of the investor who requested a quote and ζq being the uninfor-

mative signal.

Combining (D.5), the four possible jumps we just characterized, and the distributional as-

sumptions in Section 3.2 yields the dynamics (3.12).

Proof 62 (Proof of Proposition 31). We can derive from Corollary 29 that the generator A of

the type dynamics of a given agent is

(A f )(z) = 1

2
f ′′(z)σ2

z +
∫ ∫ 4∑

j=1
λi

 f

β j ·


1

z

c

ζ


− f (z)

µ(z)µ(ζ) dz dζ,

with

λ=
(
λτ λ(1−τ) λτ λ(1−τ)

)
and

β=


−2

3M (1−τ) 2
3 1− 2τ

3 0

−2
3M (1−τ) 2

3 1 −2τ
3

2
3M (1−τ) 2τ

3
1
3 0

2
3M (1−τ) 0 1

3
2τ
3

 .

We can then derive the stationary Kolmogorov Forward Equation (KFE) from this generator,

and taking the Fourier transform of this KFE yields the equation 3.13. Deriving 3.13 once with

respect to w , evaluating at w = 0, and solving for

π̂(0) = i E[z]
(∆)= iM

shows that the first moment M can be freely chosen. Deriving 3.13 twice and following the

same steps uniquely characterize the second moments of the stationary distribution of types

and, as a result, its variance.
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